
Statistics for Data Science
Wintersemester 2024/25
Solutions to the 11th exercise

1. (a) In this case, we have the prior density

f(x) ∝ exp

(
− 1

2
(x− 1)2

)
and the measurement noise density

ν(η) ∝ exp

(
− 1

2
η2
)
.

The posterior is given by Bayes’ theorem:

f(x|y) ∝ ν(y − x2)f(x)

∝ exp

(
− 1

2
(y − x2)2

)
exp

(
− 1

2
(x− 1)2

)
= exp

(
− 1

2
(y − x2)2 − 1

2
(x− 1)2

)
.

(b) The posterior density f(x|y = 2) is illustrated in Figure 1.
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Figure 1: The posterior density f(x|y = 2).

We can find the MAP estimator by solving the minimum of the negative log-
posterior

F (x) = (2− x2)2 + (x− 1)2.

The critical points can be found by solving the roots of F ′:

0 = F ′(x) = −4x(2− x2) + 2(x− 1) = 4x3 − 6x− 2 = (x+ 1)(4x2 − 4x− 2).

The critical points are therefore

x1 = −1, x2 =
1−
√
3

2
, x3 =

1 +
√
3

2
.
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Since
F ′′(x) = 12x2 − 6,

we find that F ′′(x1) > 0, F ′′(x2) < 0, and F ′′(x3) > 0. Therefore x1 and x3 are local

minima of F (and hence local maxima of f(x|y = 2)). Since F (x)
x→±∞−−−−→ ∞ and

F (x3) < F (x1), we conclude that

x̂MAP = x3 =
1 +
√
3

2
.

2. (a) The measurement noise has the density

ν(η) ∝ exp

(
− 1

2σ2
∥η∥2

)
,

while the prior has the density

f(x) ∝ exp

(
− 1

2γ2
∥x− x0∥2

)
.

The posterior is given by Bayes’ theorem:

f(x|y) ∝ ν(y − Ax)f(x)

∝ exp

(
− 1

2σ2
∥y − Ax∥2

)
exp

(
− 1

2γ2
∥x− x0∥2

)
= exp

(
− 1

2σ2
∥y − Ax∥2 − 1

2γ2
∥x− x0∥2

)
.

(b) The MAP estimate clearly satisfies

x̂MAP = argmax
x∈Rd

f(x|y)

= argmax
x∈Rd

{
exp

(
− 1

2σ2
∥y − Ax∥2 − 1

2γ2
∥x− x0∥2

)}
!
=argmin

x∈Rd

{
1

2σ2
∥y − Ax∥2 + 1

2γ2
∥x− x0∥2

}
= argmin

x∈Rd

{
∥y − Ax∥2 + σ2

γ2
∥x− x0∥2

}
= argmin

x∈Rd

{∥∥∥∥ [AλI
]
x−

[
y

λx0

] ∥∥∥∥2}, where λ =
σ

γ
.

The minimizer can be found by solving the normal equation[
A
λI

]T [
A
λI

]
x̂MAP =

[
A
λI

]T [
y

λx0

]
⇔

[
AT λI

] [A
λI

]
x̂MAP = ATy + λ2x0

⇔ (ATA+ λ2I)x̂MAP = ATy + λ2x0

⇔ x̂MAP = (ATA+ λ2I)−1(ATy + λ2x0).

Note that ATA+ λ2I is positive definite and thus invertible for all λ > 0.
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3. We derive the likelihood density f(y|x) for the multiplicative noise model

yj = ajxj, j = 1, . . . , n, y, a, x ∈ Rn,

where aj are independent, log-normally distributed random variables, i.e., log aj ∼
N (log a0, σ

2). Moreover, a is independent of x and xj > 0 for j = 1, . . . , n.
We introduce wj := log yj = log aj + log xj for j = 1, . . . , n. By assumption,

xj and aj are mutually independent and so fixing the realization xj = xj does not
affect the probability distribution of log aj.

† We notice that wj conditioned on xj is
distributed normally as log aj shifted by a constant log xj. Writing this down, we
get

f(wj | xj) = flog aj(wj − log xj) =
1√
2πσ2

exp

(
− 1

2σ2
(wj − log xj − log a0)

2

)
=

1√
2πσ2

exp

(
− 1

2σ2
(wj − log(a0xj))

2

)
.

Since wj = log yj, we have dwj =
1
yj
dyj. By change of variable, it follows that

f(yj|xj) dyj = f(wj|xj) dwj = f(log yj|xj)
1

yj
dyj

=
1√
2πσ2

1

yj
exp

(
− 1

2σ2
(log yj − log(a0xj))

2

)
dyj

=
1√
2πσ2

1

yj
exp

(
− 1

2σ2

(
log

yj
a0xj

)2
)
dyj.

By the previous argument, we have f(yi|xi) = fai(
yi
xi
) for ai ∼ logN (log a0, σ

2) and
these are independent, so

f(y|x) =
n∏

j=1

f(yj|xj) =

(
1√
2πσ2

)n
1

y1 · · · yn
exp

(
− 1

2σ2

n∑
j=1

(
log

yj
a0xj

)2
)
,

which is the desired result.

4. (a) We have

f(x, α|y) ∝ f(y|x, α)f(x, α) = f(y|x, α)f(x|α)f(α),

where

f(y|x, α) = 1√
2π

exp

(
− 1

2

(
y − 1

2
x

)2)
, (likelihood)

f(x|α) = α1/2

√
2π

exp

(
− 1

2
αx2

)
, (conditional prior)

f(α) = 1(0,∞)(α)

√
2

π
exp

(
− 1

2
α2

)
. (hyperprior)

†It is a simple exercise to verify that the mutual independence of random variables x and y
implies that the composite random variables f(x) and g(y), too, are mutually independent for
functions f and g defined on the (Borel measurable) codomains of x and y.
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Therefore

f(x, α|y) ∝ 1(0,∞)(α)α
1/2 exp

(
− 1

2

(
y − 1

2
x

)2

− 1

2
αx2 − 1

2
α2

)
, x ∈ R, α ∈ R.

(b) We observe y = 3
2
. Let us write the posterior as

f(x, α|3
2
) ∝ exp(−F (x, α)),

where

F (x, α) := −1

2
logα +

1

2

(
3

2
− 1

2
x

)2

+
1

2
αx2 +

1

2
α2, x ∈ R, α > 0.

Let us begin by solving the zeros of the gradient. The partial derivatives of F are

0 =
∂

∂x

(
− 1

2
logα +

1

2

(
3

2
− 1

2
x

)2

+
1

2
αx2 +

1

2
α2

)
= −1

2

(
3

2
− 1

2
x

)
+ αx

= −3

4
+

1

4
x+ αx

and

0 =
∂

∂α

(
− 1

2
logα +

1

2

(
3

2
− 1

2
x

)2

+
1

2
αx2 +

1

2
α2

)
= − 1

2α
+

1

2
x2 + α.

The only eligible (α > 0) solution to the nonlinear system of equations{
−3

4
+ 1

4
x+ αx = 0

− 1
2α

+ 1
2
x2 + α = 0

is (x, α) = (1, 1/2).
To establish that this point is a local minimum of F (and, consequently, a local

maximum of the posterior), we proceed as follows. The Hessian is given by

∇2F (x, α) =

[
1
4
+ α x
x 1 + 1

2α2

]
⇒ ∇2F (1, 1

2
) =

[
3
4

1
1 3

]
.

This is positive definite since the eigenvalues λ = 15±
√
145

8
are both positive. Thus

(x, α) = (1, 1/2) is a local minimum of F (and thus a local maximum of the poste-
rior).

Since F is smooth with only one critical point (x, α) ∈ R× (0,∞) and we easily
observe that

F (x, α)→ +∞ as (x, α)→ (x∗, 0) for any x∗ ∈ R
F (x, α)→ +∞ as |x| → ∞ or α→∞,

we conclude that (x, α) = (1, 1/2) is the global minimum of F and therefore the
MAP estimator of f(x, α|3

2
).
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Remark on numerical solution. In problems of this kind, one could consider
for example the following kind of alternating minimization algorithm:

– Set k = 0 and choose an initial guess for α, e.g., α0 = 1.

repeat

– Find the minimizer

xk = argmin
x∈R

F (x, αk) = argmin
x∈R

{(
3

2
− 1

2
x

)2

+ αkx
2

}
.

– Solve α > 0 from ∂J(xk,α)
∂α

= 0 and set αk+1 = α.

– Set k ← k + 1.

until convergence

5


