Statistics for Data Science
Wintersemester 2024,/25
Solutions to the 11 exercise

1. (a) In this case, we have the prior density

and the measurement noise density
L,
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The posterior is given by Bayes’ theorem:
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Figure 1: The posterior density f(z|y = 2).

We can find the MAP estimator by solving the minimum of the negative log-

posterior
F(z)=2—-2%*+ (z — 1)~

The critical points can be found by solving the roots of F”:
0=F'(z) = 422 —2*) +2(x — 1) =42® — 62 — 2 = (z + 1)(42® — 42 — 2).

The critical points are therefore

Ir = —1, To =



Since
F'(z) = 122° — 6,
we find that F"(z1) > 0, F"(x9) < 0, and F"(x3) > 0. Therefore z; and x5 are local

r—+o00

minima of F' (and hence local maxima of f(z|y = 2)). Since F(x) ——— oo and
F(z3) < F(x1), we conclude that
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IMAP = T3 = 9 .

2. (a) The measurement noise has the density

1
via) oo (= 5ol

while the prior has the density

1
f(z) o exp ( — 2—72||:1: — xOHQ).
The posterior is given by Bayes’ theorem:

f(zly) < v(y — Ax) f(z)
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(b) The MAP estimate clearly satisfies

Tyvap = argmax f(z|y)
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The minimizer can be found by solving the normal equation
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}, where A = Z.
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= arg min{
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<~ [AT )\[} |: :| IMAP = ATy + /\21'0

=4 (ATA + )\ZI)JA}MAP = ATy + >\2$0
& dyap = (ATA+ XD THA Yy 4 M),
Note that ATA + A2 is positive definite and thus invertible for all A > 0.
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3. We derive the likelihood density f(y|z) for the multiplicative noise model
yj =ax;, j=1,...,n, y,a,zecR",

where a; are independent, log-normally distributed random variables, i.e., loga; ~
N (log ag, o*). Moreover, a is independent of z and z; > 0 for j =1,...,n.

We introduce w; := logy; = loga; + logz; for j = 1,...,n. By assumption,
x; and a; are mutually independent and so fixing the realization x; = z; does not
affect the probability distribution of loga;.T We notice that w; conditioned on x; is
distributed normally as log a; shifted by a constant logz,;. Writing this down, we
get,

1 1
f(wj | l’j) = flogaj (wj - IOng) = %exp (—ﬁ(wj —log z; — log a0)2>
1 1 9
= W exp —@(’UJ] — log(aoxj)) .

Since w; = logy;, we have dw; = yljdyj. By change of variable, it follows that

fysley) dy; = f(w;lz;) dw; = f(log yj|l’j)5 dy;
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By the previous argument, we have f(y;|z;) = fo,(£) for a; ~ log N'(log ag, 0®) and
these are independent, so

o) =TT = (s ) ot xp(—gZ(lgy—) )

Jj=1 J

which is the desired result.
4. (a) We have
f(SC, O“y) (8 f(y|x, O‘)f(x7 Oé) = f(y‘xv Oé)f(ﬂ&)f(()é),

where

2
fyle, o) = L exp ( - %(y - lx) ) (likelihood)

1/2 1
f(zla) = exp ( - —ax2>, (conditional prior)

o) = Lgmla)y Zexr (- 35e°). (hyperprior)

Tt is a simple exercise to verify that the mutual independence of random variables 2 and y
implies that the composite random variables f(z) and g¢(y), too, are mutually independent for
functions f and g defined on the (Borel measurable) codomains of x and y.
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Therefore

1 1\* 1 1
flz,aly) < 1(0700)(a)a1/2 exp ( ~ 3 <y — 5517) — 50(332 — 5042), re€R, aeR.

b) We observe y = 2. Let us write the posterior as
( y=3 D
f(iL', Oé|%) X exp(—F(x, O‘))a

where

1 1/3 1\* 1 1
F(z,a) ::—§loga+§<§—§x> +§ozx2+§a2, r€eR, a>0.

Let us begin by solving the zeros of the gradient. The partial derivatives of F' are

0 0 L oga s (31 2+1 2, 1
=—| —=loga+=(=—=x —ar® + -«
gr\ 2 %*To\3 73 2 2

and

The only eligible (o« > 0) solution to the nonlinear system of equations
3,1 _
{_Z +ir+tar=0
1, 1.2 —
5tz +a=0
is (z,a) = (1,1/2).

To establish that this point is a local minimum of F' (and, consequently, a local
maximum of the posterior), we proceed as follows. The Hessian is given by

1
4+a x

31
2 — 2 Iy _ |4
VF(a:,a)—[ N 1+ﬁ} = V°F(1,3) [1 3].

This is positive definite since the eigenvalues A = % V145 are both positive. Thus
(x,a) = (1,1/2) is a local minimum of F' (and thus a local maximum of the poste-
rior).

Since F' is smooth with only one critical point (x,«) € R x (0, 00) and we easily
observe that

F(z,a) = 400 as (z,a) = (2*,0) for any z* € R

F(z,a) = 400 as |z] — o0 or a — o0,

we conclude that (z,a) = (1,1/2) is the global minimum of F' and therefore the
MAP estimator of f(z,a|3).



Remark on numerical solution. In problems of this kind, one could consider
for example the following kind of alternating minimization algorithm:

— Set k = 0 and choose an initial guess for a, e.g., ag = 1.
repeat

— Find the minimizer

31\’
x = argmin F'(x, oy) = arg min { (— - —x) + Oékl‘Z}.
z€R z€R 2 2

— Solve a > 0 from %

— Set k «+ k+ 1.

=0 and set aj1 = .

until convergence



