Statistics for Data Science Wintersemester 2024/25 Solutions to the $2nd$ exercise

1. The quantile function of f was computed in exercise 3 of last week:

$$
F^{-1}(q) = \sqrt{\log \frac{q+1}{1-q}}, \quad q \in (0,1).
$$

Please see the script w2e1.py on the course webpage.

2. (a) Please see the script w2e2.py on the course webpage. (b) The PDF of $X \sim \mathcal{N}(0, 1)$ is given by

$$
f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}, \quad x \in \mathbb{R}.
$$

and the task is to find the PDF f_Y for random variable $Y = g(X)$, $g(x) = \arctan x$, $x \in \mathbb{R}$. The inverse of g is given by

$$
g^{-1}(y) = \tan y, \quad y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right),
$$

and $(g^{-1})'(y) = \frac{1}{\cos^2 y}$ for $y \in (-\frac{\pi}{2})$ $\frac{\pi}{2}$, $\frac{\pi}{2}$ $\frac{\pi}{2}$). We can use the change of variables formula:

$$
f_Y(y) = f_X(g^{-1}(y))|(g^{-1})'(y)| = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\tan^2 y}\frac{1}{\cos^2 y}, \quad y \in (-\frac{\pi}{2}, \frac{\pi}{2}).
$$

3. (a) Let $Z = \max(X, Y^2)$, where $X, Y \sim \mathcal{U}(0, 1)$ are assumed to be independent. Then X and Y^2 are independent.[†] Thus

$$
F_Z(t) = \mathbb{P}(Z \le t) = \mathbb{P}(\max(X, Y^2) \le t)
$$

\n
$$
= \mathbb{P}(X \le t)\mathbb{P}(Y^2 \le t)
$$

\n
$$
= \mathbb{P}(X \le t)\mathbb{P}(-\sqrt{t} \le Y \le \sqrt{t})
$$

\n
$$
= \left(\int_{-\infty}^t \mathbf{1}_{[0,1]}(x) dx\right) \left(\int_{-\sqrt{t}}^{\sqrt{t}} \mathbf{1}_{[0,1]}(y) dy\right),
$$

\nwhere
$$
\int_{-\infty}^t \mathbf{1}_{[0,1]}(x) dx = \begin{cases} 0 & \text{if } t < 0 \\ t & \text{if } 0 \le t \le 1 \text{ and } \int_{-\sqrt{t}}^{\sqrt{t}} \mathbf{1}_{[0,1]}(x) dx = \begin{cases} 0 & \text{if } t < 0 \\ \sqrt{t} & \text{if } 0 \le t \le 1 \\ 1 & \text{if } t > 1. \end{cases}
$$

Therefore

$$
F_Z(t) = \begin{cases} 0 & \text{if } t < 0 \\ t^{3/2} & \text{if } 0 \le t \le 1 \\ 1 & \text{if } t > 1 \end{cases} \Rightarrow f_Z(t) = \frac{3}{2}\sqrt{t} \mathbf{1}_{[0,1]}(t).
$$

We also infer from the above that F_Z^{-1} $q_Z^{-1}(q) = q^{2/3}, q \in (0,1).$

(b) Please see the script w2e3.py on the course webpage.

[†]Claim: Let $f, g : \mathbb{R} \to \mathbb{R}$ be measurable (e.g., continuous) functions. If X and Y are independent real-valued RVs, then $f(X)$ and $g(Y)$ are independent real-valued RVs. Proof: $\mathbb{P}(f(X) \in A, g(Y) \in A)$ $B) = \mathbb{P}(X \in f^{-1}(A), Y \in g^{-1}(B)) \stackrel{X \perp Y}{=} \mathbb{P}(X \in f^{-1}(A)) \mathbb{P}(Y \in g^{-1}(B)) = \mathbb{P}(f(X) \in A) \mathbb{P}(g(Y) \in A)$ B) for all $A, B \subset \mathbb{R}$. Here, $f^{-1}(A) = \{x \in \mathbb{R} \mid f(x) \in A\}$ and $g^{-1}(B) = \{x \in B \mid g(x) \in B\}$ are preimages.

4. Let $(Y_1, Y_2) = g(X_1, X_2)$, where $g(x_1, x_2) = (\log x_1, \log x_2)$ for $x_1, x_2 > 0$. The mapping $g: \mathbb{R}_+^2 \to \mathbb{R}^2$ is a continuously differentiable bijection, and it has a continuously differentiable inverse $(x_1, x_2) \mapsto (e^{x_1}, e^{x_2})$ for $x_1, x_2 \in \mathbb{R}$. By the change of variables formula,

$$
f_{X_1,X_2}(x_1,x_2) = f_{Y_1,Y_2}(g(x_1,x_2)) |\det Dg(x_1,x_2)|,
$$

where

$$
f_{Y_1,Y_2}(y_1,y_2)=\frac{1}{2\pi\sqrt{\det C}}\exp\left(-\frac{1}{2}[y_1-1,y_2-1]C^{-1}\begin{bmatrix}y_1-1\\y_2-1\end{bmatrix}\right), C=\begin{bmatrix}2 & -1\\-1 & 2\end{bmatrix}.
$$

Note that the matrix C is positive definite since

$$
[x_1, x_2]C\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 2x_1^2 - 2x_1x_2 + 2x_2^2 = \underbrace{\frac{1}{2}(2x_1 - x_2)^2 + \frac{3}{2}x_2^2}_{\text{always nonnegative; and}
$$

zero iff $2x_1 - x_2 = 0$ and $x_2 = 0$
iff $x_1 = x_2 = 0$

for all $(x_1, x_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}\.$ (Alternatively, one can establish that C is positive definite by noticing that all of its eigenvalues, $\lambda_1 = 3$ and $\lambda_2 = 1$, are positive.) Moreover, $C^{-1} = \begin{bmatrix} 2/3 & 1/3 \\ 1/2 & 2/3 \end{bmatrix}$ 1/3 2/3 1 .

The Jacobian matrix of \overline{g} is

$$
Dg(x_1, x_2) = \begin{bmatrix} \frac{\partial}{\partial x_1} \log x_1 & \frac{\partial}{\partial x_2} \log x_1 \\ \frac{\partial}{\partial x_1} \log x_2 & \frac{\partial}{\partial x_2} \log x_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{x_1} & 0 \\ 0 & \frac{1}{x_2} \end{bmatrix} \Rightarrow \det Dg(x_1, x_2) = \frac{1}{x_1 x_2}.
$$

Therefore

$$
f_{X_1,X_2}(x_1,x_2) = \frac{1}{2\pi\sqrt{\det C}} \frac{1}{x_1 x_2} \exp\left(-\frac{1}{2} [\log x_1 - 1, \log x_2 - 1] C^{-1} \begin{bmatrix} \log x_1 - 1 \\ \log x_2 - 1 \end{bmatrix}\right)
$$
\n(1)

for $x_1, x_2 > 0$. This is known as a multivariate *lognormal distribution*, defined by the fact that the (componentwise) logarithm of (X_1, X_2) is a multivariate Gaussian RV. In this case, we would denote $(X_1, X_2) \sim$ Lognormal (μ, C) with parameters $\mu = [1, 1]^T$ and $C = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$.

Remark. The PDF can be further simplified (by expanding the expression inside the exponent and evaluating the determinant of C) to

$$
f_{X_1,X_2}(x_1,x_2)=\frac{1}{2\sqrt{3}\pi}e^{-1-\frac{1}{3}\log^2 x_1-\frac{1}{3}\log x_1\log x_2-\frac{1}{3}\log^2 x_2}.
$$

However, the formula (1) is arguably more informative since it is easier to compare it to the PDF of a lognormal distribution by reading off the parameters $\mu = [1, 1]^T$ and $C =$ $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$.