
Statistics for Data Science
Wintersemester 2024/25
Solutions to the 2nd exercise

1. The quantile function of f was computed in exercise 3 of last week:

F−1(q) =

√
log

q + 1

1− q
, q ∈ (0, 1).

Please see the script w2e1.py on the course webpage.

2. (a) Please see the script w2e2.py on the course webpage.
(b) The PDF of X ∼ N (0, 1) is given by

fX(x) =
1√
2π

e−
1
2
x2

, x ∈ R.

and the task is to find the PDF fY for random variable Y = g(X), g(x) = arc tanx,
x ∈ R. The inverse of g is given by

g−1(y) = tan y, y ∈ (−π
2
, π
2
),

and (g−1)′(y) = 1
cos2 y

for y ∈ (−π
2
, π
2
). We can use the change of variables formula:

fY (y) = fX(g
−1(y))|(g−1)′(y)| = 1√

2π
e−

1
2
tan2 y 1

cos2 y
, y ∈ (−π

2
, π
2
).

3. (a) Let Z = max(X, Y 2), where X, Y ∼ U(0, 1) are assumed to be independent.
Then X and Y 2 are independent.† Thus

FZ(t) = P(Z ≤ t) = P(max(X, Y 2) ≤ t)

= P(X ≤ t)P(Y 2 ≤ t)

= P(X ≤ t)P(−
√
t ≤ Y ≤

√
t)

=

(∫ t

−∞
1[0,1](x) dx

)(∫ √
t

−
√
t

1[0,1](y) dy

)
,

where

∫ t

−∞
1[0,1](x) dx =


0 if t < 0

t if 0 ≤ t ≤ 1

1 if t > 1

and

∫ √
t

−
√
t

1[0,1](x) dx =


0 if t < 0√
t if 0 ≤ t ≤ 1

1 if t > 1.
Therefore

FZ(t) =


0 if t < 0

t3/2 if 0 ≤ t ≤ 1

1 if t > 1

⇒ fZ(t) =
3

2

√
t1[0,1](t).

We also infer from the above that F−1
Z (q) = q2/3, q ∈ (0, 1).

(b) Please see the script w2e3.py on the course webpage.
†Claim: Let f, g : R → R be measurable (e.g., continuous) functions. If X and Y are independent

real-valued RVs, then f(X) and g(Y ) are independent real-valued RVs. Proof: P(f(X) ∈ A, g(Y ) ∈
B) = P(X ∈ f−1(A), Y ∈ g−1(B))

X⊥Y
= P(X ∈ f−1(A))P(Y ∈ g−1(B)) = P(f(X) ∈ A)P(g(Y ) ∈

B) for all A,B ⊂ R. Here, f−1(A) = {x ∈ R | f(x) ∈ A} and g−1(B) = {x ∈ B | g(x) ∈ B} are
preimages.

1



4. Let (Y1, Y2) = g(X1, X2), where g(x1, x2) = (log x1, log x2) for x1, x2 > 0. The
mapping g : R2

+ → R2 is a continuously differentiable bijection, and it has a con-
tinuously differentiable inverse (x1, x2) 7→ (ex1 , ex2) for x1, x2 ∈ R. By the change of
variables formula,

fX1,X2(x1, x2) = fY1,Y2(g(x1, x2))| detDg(x1, x2)|,

where

fY1,Y2(y1, y2) =
1

2π
√
detC

exp

(
−1

2
[y1 − 1, y2 − 1]C−1

[
y1 − 1
y2 − 1

])
, C =

[
2 −1
−1 2

]
.

Note that the matrix C is positive definite since

[x1, x2]C

[
x1

x2

]
= 2x2

1 − 2x1x2 + 2x2
2 =

1

2
(2x1 − x2)

2 +
3

2
x2
2︸ ︷︷ ︸

always nonnegative; and
zero iff 2x1−x2=0 and x2=0

iff x1 = x2 = 0

> 0

for all (x1, x2) ∈ R2 \ {(0, 0)}. (Alternatively, one can establish that C is positive
definite by noticing that all of its eigenvalues, λ1 = 3 and λ2 = 1, are positive.)

Moreover, C−1 =

[
2/3 1/3
1/3 2/3

]
.

The Jacobian matrix of g is

Dg(x1, x2) =

[ ∂
∂x1

log x1
∂

∂x2
log x1

∂
∂x1

log x2
∂

∂x2
log x2

]
=

[ 1
x1

0

0 1
x2

]
⇒ detDg(x1, x2) =

1

x1x2

.

Therefore

fX1,X2(x1, x2) =
1

2π
√
detC

1

x1x2

exp

(
− 1

2
[log x1 − 1, log x2 − 1]C−1

[
log x1 − 1
log x2 − 1

])
(1)

for x1, x2 > 0. This is known as a multivariate lognormal distribution, defined by
the fact that the (componentwise) logarithm of (X1, X2) is a multivariate Gaussian
RV. In this case, we would denote (X1, X2) ∼ Lognormal(µ,C) with parameters

µ = [1, 1]T and C =

[
2 −1
−1 2

]
.

Remark. The PDF can be further simplified (by expanding the expression inside
the exponent and evaluating the determinant of C) to

fX1,X2(x1, x2) =
1

2
√
3π

e−1− 1
3
log2 x1− 1

3
log x1 log x2− 1

3
log2 x2 .

However, the formula (1) is arguably more informative since it is easier to compare
it to the PDF of a lognormal distribution by reading off the parameters µ = [1, 1]T

and C =

[
2 −1
−1 2

]
.
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