
Statistics for Data Science
Wintersemester 2024/25
Solutions to the 3rd exercise

1. Let X ∼ N (0, 1) and t ∈ R. Then

P(X2 ≤ t) = P(−
√
t ≤ X ≤

√
t) =

{
0 if t < 0,
1√
2π

∫ √
t

−
√
t
e−

1
2
x2
dx if t ≥ 0.

If t < 0, then f(t) = d
dt
P(X2 ≤ t) = 0. If t ≥ 0, define Φ(t) := 1√

2π

∫ t

−∞ e−
1
2
x2
dx.

Since Φ′(t) = 1√
2π
e−

1
2
t2 , we obtain

f(t) =
d

dt
(Φ(

√
t)− Φ(−

√
t)) = Φ′(

√
t)

1

2
√
t
+ Φ′(−

√
t)

1

2
√
t
=

1√
2πt

e−t/2,

as desired.

2. Let X ∼ N (0, 1). Then by the law of the unconscious statistician,

E[|X|] =
∫ ∞

−∞
|x| 1√

2π
e−

1
2
x2

dx =
2√
2π

∫ ∞

0

xe−
1
2
x2

dx = −
√

2

π

[
e−

1
2
x2]x=∞

x=0
=

√
2

π
.

Moreover,

Var(|X|) = E[|X|2]− E[|X|]2 = E[X2]− E[|X|]2 = 1− 2

π
=

π − 2

π
.

Discussion. There is an interesting phenomenon which happens for d-variate
Gaussian distributions as the dimension d increases. See the Appendix of this doc-
ument for further information.

3. Since E[X] = 0 and E[X3] = 0, we find that

Cov(X, Y ) = E[(X − E[X])(X2 − E[X2])]

= E[X3]− E[X]E[X2]− E[X]E[X2] + E[X]E[X2] = 0.

The random variables X and X2 are clearly dependent since the realization of X
completely determines X2. One can also easily check that

P(X ≤ t,X2 ≤ t) ̸= P(X ≤ t)P(X2 ≤ t) for any t > 0.

4. The covariance matrix is defined by

C = E[(X − µ)(X − µ)T],

which implies that Ci,j = E[(Xi−µi)(Xj−µj)], where we denote X = [X1, . . . , Xn]
T

and µ = [µ1, . . . , µn]
T. Then

E[∥X − µ∥2] = E[(X1 − µ1)
2 + (X2 − µ2)

2 + . . .+ (Xn − µn)
2]

= E[(X1 − µ1)
2] + E[(X2 − µ2)

2] + . . .+ E[(Xn − µn)
2]

= E[(X1 − µ1)(X1 − µ1)] + E[(X2 − µ2)(X2 − µ2)] + . . .

+ E[(Xn − µn)(Xn − µn)]

= tr(C).
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Appendix: Gaussian annulus theorem

We will consider the two-dimensional generalization of exercise 2, as well as the
generalization to d dimensions. Before doing so, we note the following helpful integral
identity: ∫ ∞

0

rke−
1
2
r2 dr (change of variables: t = 1

2
r2)

= 2k/2−1/2

∫ ∞

0

tk/2−1/2e−t dt

= 2k/2−1/2Γ
(
k+1
2

)
, (1)

where we used the gamma function Γ(x) =
∫∞
0

tx−1e−t dt, x > 0. The gamma
function is a generalization of the factorial. In fact, it satisfies Γ(x+ 1) = xΓ(x) for
x > 0 and Γ(k + 1) = k! for k ∈ N0.

Bivariate case. Let X ∼ N (0, I2) and let ∥ · ∥ denote the Euclidean norm in R2.
By using the change of variables to polar coordinates, i.e., (x, y) = (r cos θ, r sin θ),
with dx dy = r dθ dr, we obtain

E[∥X∥] =
∫
R2

∥x∥ 1

2π
e−

1
2
∥x∥2 dx =

1

2π

∫ ∞

0

∫ 2π

0

r2e−
1
2
r2 dθ dr =

∫ ∞

0

r2e−
1
2
r2 dθ dr

=

√
2π

2
=

√
π

2
,

where the final integral follows from (1) or the computation carried out on pg. 114
of the lecture notes.

Similarly,

E[∥X∥2] =
∫
R2

∥x∥2 1

2π
e−

1
2
∥x∥2 dx =

1

2π

∫ ∞

0

∫ 2π

0

r3e−
1
2
r2 dθ dr =

∫ ∞

0

r3e−
1
2
r2 dr

(1)
= 2,

so

Var(∥X∥) = E[∥X∥2]− E[∥X∥]2 = 2− π

2
=

4− π

2
.

d-variate case. Let X ∼ N (0, Id) and let ∥ · ∥ denote the Euclidean norm in Rd

for d ∈ N. Then using the change of variables to d-dimensional spherical coordinates
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(see also: https://en.wikipedia.org/wiki/Coarea_formula), we obtain

E[∥X∥] =
∫
Rd

∥x∥ 1

(2π)d/2
e−

1
2
∥x∥2 dx

=
1

(2π)d/2

∫ ∞

0

∫
{θ∈Rd:∥θ∥=1}

rde−
1
2
r2 dS(θ) dr

(surface area of the unit sphere in Rd: 2πd/2

Γ( d
2
)
)

=
2πd/2

Γ(d
2
)(2π)d/2

∫ ∞

0

rde−
1
2
r2 dr (

∫ ∞

0

rde−
1
2
r2 dr

(1)
= 2d/2−1/2Γ(d+1

2
))

=
1

Γ(d
2
)2d/2−1

· 2d/2−1/2Γ
(
d+1
2

)
=

√
2
Γ(d+1

2
)

Γ(d
2
)

(
Γ(d+1

2
)

Γ(d
2
)

=

√
d√
2
− 1

4
√
2d

+O(d−3/2) as d → ∞)

=
√
d− 1

4
d−1/2 +O(d−3/2) as d → ∞,

where the last step follows from the asymptotic behavior of
Γ( d+1

2
)

Γ( d
2
)

as d → ∞. Here,

we denote f(x) = O(g(x)) as x → ∞ if there exists a constant C > 0 such that
f(x) ≤ Cg(x) for all sufficiently large x > 0.

Similarly,

E[∥X∥2] =
∫
Rd

∥x∥2 1

(2π)d/2
e−

1
2
∥x∥2 dx

=
1

(2π)d/2

∫ ∞

0

∫
{θ∈Rd:∥θ∥=1}

rd+1e−
1
2
r2 dS(θ) dr

(surface area of the unit sphere in Rd: 2πd/2

Γ( d
2
)
)

=
2πd/2

Γ(d
2
)(2π)d/2

∫ ∞

0

rd+1e−
1
2
r2 dr (

∫ ∞

0

rd+1e−
1
2
r2 dr

(1)
= 2d/2Γ(d

2
+ 1))

= 2
Γ(d

2
+ 1)

Γ(d
2
)

= d,

where we made use of the property Γ(x+ 1) = xΓ(x) for x > 0.
Therefore

Var(∥X∥) = E[∥X∥2]− E[∥X∥]2 = 1

2
+O(d−1/2).

In conclusion:
E[∥X∥] =

√
d+O(d−1/2) as d → ∞,

Var(∥X∥) = 1
2
+O(d−1/2) as d → ∞.

This is the so-called Gaussian annulus theorem: “Nearly all the mass of the PDF of
a d-dimensional spherical Gaussian distribution with unit variance is concentrated
in a thin annulus of constant width at radius

√
d from the origin as the dimension

d increases.” That is, even though X ∼ N (0, Id) is centered at the origin, most of
the realizations of this random variable will have norm close to

√
d on average.
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