Statistics for Data Science Wintersemester 2024/25 Solutions to the 4^{th} exercise

1. (a) We obtain

$$\mathbb{E}[\overline{m}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n}\sum_{i=1}^n m = m.$$

(b) There holds

$$\operatorname{Var}(\overline{m}_n) = \mathbb{E}\left[\left(\frac{1}{n}\sum_{i=1}^n X_i\right) - m\right)^2\right]$$
$$= \mathbb{E}\left[\left(\frac{1}{n}\sum_{i=1}^n (X_i - m)\right)^2\right]$$
$$= \frac{1}{n^2}\sum_{i=1}^n \mathbb{E}[(X_i - m)^2] = \frac{\sigma^2}{n}.$$

(c) Since $X \sim \mathcal{N}(1,2)$, we deduce that

$$\operatorname{Var}(\overline{m}_n) \le 10^{-2} \quad \Leftrightarrow \quad \frac{2}{n} \le 10^{-2} \quad \Leftrightarrow \quad n \ge 200.$$

2. (a) Please see the script w4e2.py on the course webpage.

In the implementation, it may be useful to notice that if $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p)$, then $X_1 + \cdots + X_n \sim \text{Bin}(n, p)$.

(b) Since $\mathbb{E}[X] = p$ and $\mathrm{Var}(X) = p(1-p)$, the central limit theorem implies that

$$\sqrt{\frac{n}{p(1-p)}} \left(\frac{1}{n} \sum_{i=1}^{n} X_i - p \right) \stackrel{d}{\to} \mathcal{N}(0,1)$$

or, loosely speaking,

$$\frac{1}{n} \sum_{k=1}^{n} X_k \stackrel{d}{\approx} \mathcal{N}\left(p, \frac{p(1-p)}{n}\right) \quad \text{for large } n.$$

In particular,

$$H = \sum_{k=1}^{n} X_k \stackrel{d}{\approx} \mathcal{N}(np, np(1-p)).$$

(c) Let $\mu = np$ and $\sigma = \sqrt{np(1-p)}$. We wish to find a > 0 such that

$$\int_{\mu-a}^{\mu+a} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} dx = 0.95.$$

Using the change of variables $y = \frac{x-\mu}{\sigma}$, where $dx = \sigma dy$, we obtain

$$\int_{-a/\sigma}^{a/\sigma} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2} \, \mathrm{d}y = 0.95 \quad \Leftrightarrow \quad 2 \int_0^{a/\sigma} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2} \, \mathrm{d}y = 0.95$$

$$\Leftrightarrow \quad \int_0^{a/\sigma} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2} \, \mathrm{d}y = \frac{0.95}{2}$$

$$\Leftrightarrow \quad \Phi\left(\frac{a}{\sigma}\right) = \int_{-\infty}^{a/\sigma} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2} \, \mathrm{d}y = \frac{1}{2} + \frac{0.95}{2}$$

$$\Leftrightarrow \quad \frac{a}{\sigma} = \Phi^{-1}\left(\frac{1}{2} + \frac{0.95}{2}\right)$$

$$\Leftrightarrow \quad a = \sigma \Phi^{-1}\left(\frac{1}{2} + \frac{0.95}{2}\right)$$

$$\Leftrightarrow \quad a = \sqrt{np(1-p)}\Phi^{-1}\left(\frac{1}{2} + \frac{0.95}{2}\right),$$

where $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$ is the CDF of $\mathcal{N}(0,1)$ and Φ^{-1} the corresponding quantile function. Plugging in the values $p = \frac{1}{3}$, $n = 10^3$, and $\Phi^{-1}(\frac{1}{2} + \frac{0.95}{2}) = 1.95996...$ yields

$$a = 29.2174...$$

and therefore

$$\mathbb{P}(304.116 \le H \le 362.551) \approx 0.95.$$

3. Please see the script w4e3.py on the course webpage. By the central limit theorem,

$$\sqrt{\frac{n}{\sigma^2}}(Q_{d,n}(g) - I_d(g)) \xrightarrow{d} \mathcal{N}(0,1),$$

where $\sigma^2 = \text{Var}(g(X))$. Loosely speaking,

$$Q_{d,n}(g) - I_d(g) \stackrel{d}{\approx} \mathcal{N}\left(0, \frac{\sigma^2}{n}\right)$$
 for large n .

Therefore one expects the Monte Carlo convergence rate

$$|Q_{d,n}(g) - I_d(g)| \approx \frac{\sigma}{\sqrt{n}}.$$

Especially, the expected convergence rate is $\mathcal{O}(n^{-1/2})$ regardless of $d \in \mathbb{N}$.

4. (a) Let $k \in \mathbb{N}$. Clearly, $f_k(x) \geq 0$ for all $x \in \mathbb{R}$. On the other hand,

$$\int_{-\infty}^{\infty} f_k(x) \, \mathrm{d}x = \int_{1}^{\infty} \frac{k}{x^{k+1}} \, \mathrm{d}x = -\left[x^{-k}\right]_{x=1}^{x=\infty} = 1.$$

Therefore f_k is a probability density function for all $k \in \mathbb{N}$.

(b) Let $\ell \in \mathbb{N}$. Now

$$\mathbb{E}[X^{\ell}] = \int_{1}^{\infty} x^{\ell} \frac{k}{x^{k+1}} \, \mathrm{d}x = k \int_{1}^{\infty} x^{\ell-k-1} \, \mathrm{d}x.$$

If $0 \le \ell < k$, then

$$\mathbb{E}[X^{\ell}] = \frac{k}{\ell - k} \left[x^{\ell - k} \right]_{x=1}^{x=\infty} = \frac{k}{k - \ell} < \infty.$$

If $\ell \geq k$, then $x^{\ell-k-1} \geq x^{-1}$ for all $x \geq 1$ and thus

$$\mathbb{E}[X^{\ell}] \ge \int_{1}^{\infty} x^{-1} \, \mathrm{d}x = \infty.$$

(c) If k=1, then X is not integrable and the sample average \overline{X}_n of course diverges since $\mathbb{E}[X]=\infty$.

If k=2, then X is integrable, but not square-integrable. The sample average \overline{X}_n converges almost surely to $\mathbb{E}[X]$ by the (strong) law of large numbers. The central limit theorem does not hold.[†]

If $k \geq 3$, then X is square-integrable. The sample average \overline{X}_n converges almost surely to $\mathbb{E}[X]$ by the (strong) law of large numbers. In fact,

$$\sqrt{\frac{n}{\sigma^2}}(\overline{X}_n - \mu) \stackrel{d}{\to} \mathcal{N}(0, 1),$$

where $\mu = \mathbb{E}[X] = \frac{k}{k-1}$ and $\sigma^2 = \text{Var}(X) = \frac{k}{(k-2)(k-1)^2}$ for $k \geq 3$. The theoretically expected convergence rate is $|\overline{X}_n - \mathbb{E}[X]| = \mathcal{O}(n^{-1/2})$.

Appendix

The integral formula $I_d(g) = 2^d \cos(\frac{d}{2})(\sin \frac{1}{2})^d$ for $d \in \mathbb{N}$ in task 3 is a consequence of the following, more general result.

Lemma (Oscillatory integral family). Let $c_i \in \mathbb{R} \setminus \{0\}$ and $w_i \in \mathbb{R}$ for all $i \in \{1, \ldots, d\}$. Then

$$\int_{0}^{1} \cdots \int_{0}^{1} \cos\left(2\pi w_{1} + \sum_{i=1}^{d} c_{i} x_{i}\right) dx_{d} \cdots dx_{1} = 2^{d} \cos\left(2\pi w_{1} + \frac{1}{2} \sum_{i=1}^{d} c_{i}\right) \prod_{i=1}^{d} \frac{\sin(\frac{c_{i}}{2})}{c_{i}}.$$

Proof. The claim can be proved a fortiori by first proving the more general integral formula

$$\int_{0}^{1} \cdots \int_{0}^{1} \cos\left(C + \sum_{i=1}^{d} c_{i} x_{i}\right) dx_{d} \cdots dx_{1} = 2^{d} \cos\left(C + \frac{1}{2} \sum_{i=1}^{d} c_{i}\right) \prod_{i=1}^{d} \frac{\sin(\frac{c_{i}}{2})}{c_{i}}, \quad C \in \mathbb{R},$$
(1)

[†]Numerically, the Gaussian approximation does seem to resemble \overline{X}_n for large n to a certain degree. This is somewhat expected, since the density $f_{2+\varepsilon}(x) = \frac{2+\varepsilon}{x^{3+\varepsilon}} \mathbf{1}_{[1,\infty)}(x)$ actually does satisfy the conditions of the CLT for arbitrarily small $\varepsilon > 0$. However, the tails of the distribution corresponding to $f_{2+\varepsilon}$ are not perfectly captured when ε is small (in practice, this means that n may need to be an **extremely** large number for the CLT to kick into effect for $0 < \varepsilon \ll 1$).

using induction with respect to the dimension $d \in \mathbb{N}$. The basis d = 1 of the induction argument follows by first computing

$$\int_{0}^{1} \cos(C + c_{1}x_{1}) dx_{1} = \frac{1}{c_{1}} \left[\sin(C + c_{1}) - \sin(C) \right]$$

$$= \frac{1}{c_{1}} \left[\cos(C + c_{1} - \frac{\pi}{2}) - \cos(C - \frac{\pi}{2}) \right]$$

$$= \frac{1}{c_{1}} \left[\cos(C + \frac{1}{2}c_{1} + \frac{1}{2}c_{1} - \frac{\pi}{2}) - \cos(C + \frac{1}{2}c_{1} - \frac{1}{2}c_{1} - \frac{\pi}{2}) \right]$$

$$= 2\cos(C + \frac{1}{2}c_{1}) \frac{\sin(\frac{c_{1}}{2})}{c_{1}},$$

where the final step follows from the trigonometric identity $\cos(x+y) - \cos(x-y) = 2\cos(x+\frac{\pi}{2})\sin(y)$ with $x = C + \frac{1}{2}c_1 - \frac{\pi}{2}$ and $y = \frac{1}{2}c_1$.

Suppose that (1) holds for some $d \in \mathbb{N}$. Then it follows that

$$\begin{split} &\int_{0}^{1} \cdots \int_{0}^{1} \cos \left(C + \sum_{i=1}^{d+1} c_{i} x_{i}\right) \mathrm{d}x_{d+1} \cdots \mathrm{d}x_{1} \\ &= \int_{0}^{1} \cdots \int_{0}^{1} \left(\int_{0}^{1} \cos \left(C + \sum_{i=1}^{d} c_{i} x_{i} + c_{d+1} x_{d+1}\right) \mathrm{d}x_{d+1}\right) \mathrm{d}x_{d} \cdots \mathrm{d}x_{1} \\ &= \frac{1}{c_{d+1}} \int_{0}^{1} \cdots \int_{0}^{1} \left[\sin \left(C + \sum_{i=1}^{d} c_{i} x_{i} + c_{d+1}\right) - \sin \left(C + \sum_{i=1}^{d} c_{i} x_{i}\right)\right] \mathrm{d}x_{d} \cdots \mathrm{d}x_{1} \\ &= \frac{1}{c_{d+1}} \int_{0}^{1} \cdots \int_{0}^{1} \left[\cos \left(C + \sum_{i=1}^{d} c_{i} x_{i} + c_{d+1} - \frac{\pi}{2}\right) - \cos \left(C + \sum_{i=1}^{d} c_{i} x_{i} - \frac{\pi}{2}\right)\right] \mathrm{d}x_{d} \cdots \mathrm{d}x_{1} \\ &= \frac{1}{c_{d+1}} \left[2^{d} \cos \left(C + \frac{1}{2} \sum_{i=1}^{d} c_{i} + c_{d+1} - \frac{\pi}{2}\right) \prod_{i=1}^{d} \frac{\sin(\frac{c_{i}}{2})}{c_{i}} - 2^{d} \cos \left(C + \frac{1}{2} \sum_{i=1}^{d} c_{i} - \frac{\pi}{2}\right) \prod_{i=1}^{d} \frac{\sin(\frac{c_{i}}{2})}{c_{i}}\right] \\ &= \frac{2^{d}}{c_{d+1}} \left[\cos \left(C + \frac{1}{2} \sum_{i=1}^{d} c_{i} + c_{d+1} - \frac{\pi}{2}\right) - \cos \left(C + \frac{1}{2} \sum_{i=1}^{d} c_{i} - \frac{\pi}{2}\right)\right] \prod_{i=1}^{d} \frac{\sin(\frac{c_{i}}{2})}{c_{i}} \\ &= 2^{d+1} \cos \left(C + \frac{1}{2} \sum_{i=1}^{d+1} c_{i}\right) \prod_{i=1}^{d+1} \frac{\sin(\frac{c_{i}}{2})}{c_{i}}, \end{split}$$

where the final step follows once again from the trigonometric identity $\cos(x+y) - \cos(x-y) = 2\cos(x+\frac{\pi}{2})\sin(y)$, this time by choosing $x = C + \frac{1}{2}\sum_{i=1}^{d+1}c_i - \frac{\pi}{2}$ and $y = \frac{1}{2}c_{d+1}$. This proves the assertion.