Inverse Problems Sommersemester 2023 Return your written solutions either in person or by email to vesa.kaarnioja@fu-berlin.de by Tuesday 11 July, 2023, 10:15

Please note that there are a total of 4 tasks in this exercise sheet.

1. Assume that you have a Gaussian posterior distribution

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \sim \pi^y \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & p \\ p & 1 \end{pmatrix}\right).$$

- (a) Write a Gibbs sampler for the posterior π^y . Based on the generated samples, what are the conditional mean estimate of π^y and the marginal standard deviations of x_1 and x_2 ?
- (b) Repeat part (a) for parameter values p = 0.5, 0.9, 0.99, and 0.999. How does the degree of correlation between x_1 and x_2 affect the performance of the Gibbs sampler?
- 2. Suppose we have an inverse problem

$$y = \begin{pmatrix} x_1^2 + x_2^2 \\ x_2 \end{pmatrix} + \eta,$$

where $y \in \mathbb{R}^2$, $x = (x_1, x_2)^{\mathrm{T}} \in \mathbb{R}^2$. Let us set the prior $x = z \cdot \mathbf{1}_{[-4,4]^2}(z)$, where $z \sim \mathcal{N}((0,0)^{\mathrm{T}}, I)$,

$$\mathbf{1}_B(z) = \begin{cases} 1, & z \in B, \\ 0, & \text{otherwise,} \end{cases}$$

and $\eta \sim \mathcal{N}(0, \delta^2 I)$ with $\delta = 0.1$. Suppose we are given the observation $y = (7, -2)^{\mathrm{T}}$. Implement MCMC with Metropolis–Hastings kernel

$$x_{k+1} \sim \sqrt{1-\beta^2} \cdot x_k + \beta \xi, \quad \xi \sim \mathcal{N}(0, I),$$

for different values of $\beta \in (0, 1)$ to sample the posterior density. For each value of β produce 10 000 samples and plot them. What do you notice? Also compute for each β the *acceptance ratio*, i.e., the ratio between accepted jumps and the total length of the chain. Use the origin as initial value.

Using the best choice of β , compute the expectation of the posterior, i.e., the conditional mean estimate

$$x_{\rm CM} = \int_{\mathbb{R}^2} x \pi^y(x) \,\mathrm{d}x.$$

3. Let $\rho_1 : \mathbb{R} \to \mathbb{R}_{>0}$ and $\rho_2 : \mathbb{R} \to \mathbb{R}_{>0}$ be probability densities. The Kullback– Leibler divergence is defined by

$$d_{\mathrm{KL}}(\rho_1 \| \rho_2) = \int_{\mathbb{R}} \log\left(\frac{\rho_1(x)}{\rho_2(x)}\right) \rho_1(x) \,\mathrm{d}x. \tag{1}$$

Solve the Kullback–Leibler divergence $d_{\mathrm{KL}}(\rho_1 \| \rho_2)$ for $\rho_1 \sim \mathcal{N}(m_1, \sigma_1^2)$ and $\rho_2 \sim \mathcal{N}(m_2, \sigma_2^2)$, where $m_1, m_2 \in \mathbb{R}$ and $\sigma_1, \sigma_2 > 0$.

4. Let $\rho \sim \mathcal{N}(0,1)$ and assume that the posterior density is given by

$$\pi^{y}(x) = 0.6 \cdot \rho(x-3) + 0.4 \cdot \rho(x+2).$$

Using your favorite programming language, try to find the KL-optimal approximation for π^y in the class of $\mathcal{B} = \{\mathcal{N}(m, 1) \mid m \in \mathbb{R}\}$, that is, find m that solves

- (a) $\inf_{m \in \mathbb{R}} d_{\mathrm{KL}}(\mathcal{N}(m, 1) \| \pi^y),$
- (b) $\inf_{m \in \mathbb{R}} d_{\mathrm{KL}}(\pi^y \| \mathcal{N}(m, 1)),$

where d_{KL} is the Kullback–Leibler divergence defined in (1). In each case, plot the probability density for $\mathcal{N}(m, 1)$ against the posterior density π^y . One of the approximations you obtained should be centered around the mode of π^y while the other one should be centered around the mean of π^y . Which one is which?

Hint: You are not required to do anything too sophisticated in this task. Any reasonable minimization procedure or quadrature rule is OK.