
Inverse Problems Bonus exercises
Sommersemester 2023
These exercises will not be graded and do not need to be returned.

1. Suppose ρ1 ∼ N (m1, C1) and ρ2 ∼ N (m2, C2). Prove that

dH(ρ1, ρ2)
2 = 1− det(C1)

1/4det(C2)
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det
(
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2

)1/2 .

2. Consider a simple Bayesian inverse problem

y =
1

2
x+ η,

where x, η ∈ R and y ∈ R is the measurement. Suppose that the unknown x has
the prior distribution x ∼ N (0, 1) and this is independent of the observational
noise, which has the probability density

πnoise(η) =

{
2 exp(−2η) if η ≥ 0,

0 if η < 0.

(a) Derive the posterior density πpost(x|y) up to a constant factor, where you
can consider the marginal distribution π(y) as part of the (non-explicit)
normalization constant.

(b) Solve the maximum a posteriori estimate when we observe y = 1
2
.

(c) Use importance sampling to approximate the conditional mean estimate
for this problem.

3. Let x, y, η ∈ R2. Consider the Bayesian inverse problem

y =

(
1 0
0 0

)
x+ η

with additive noise η ∼ N (0, γ2I2), where I2 ∈ R2×2 is an identity matrix.
Suppose that the prior distribution is given by x ∼ N (0, I2), and this is inde-
pendent of the noise. What is the posterior distribution of x|y if we observe

y =
(
1 2

)T
? What is the posterior covariance? What happens to the posterior

distribution and posterior covariance under decreasing noise (γ ↓ 0)?

4. Suppose A = diag(λ1, . . . , λn) ∈ Rn×n, where λ1≥· · ·≥λn>0, and let y ∈ Rn.

(a) Prove that the mapping T : Rn → Rn given by

T (x) = x+ β(ATy − ATAx)

is a contraction when β > 0 is small enough.



(b) Define the Landweber–Fridman iteration. Describe briefly how it can be
used to regularize an ill-posed system

Ax = y,

where x ∈ Rn is the unknown. Why it is necessary in the Landweber–
Fridman iteration that the mapping T is a contraction?

5. Let us consider the following inverse problem: suppose that a particle with
charge q ∈ R is located at some unknown location x∗ ∈ [0, 1] in the interval
[0, 1] and our goal is to locate it based on measurements of voltage at the
interval end points x = 0 and x = 1. The voltage at any point x ∈ [0, 1] is
given by

y(x) =
q

|x∗ − x|
.

Assume that each voltage measurement is corrupted by mutually independent
additive normally distributed noise with zero mean and a known variance σ2,
which is the same for both sensor locations. Assume further that we know a
priori that the particle is within the interval [0, 1] and suppose that our prior
information about the charge is that it is normally distributed around some
fixed q0 ∈ R with known variance γ2.

(a) Write down the posterior density P(x, q | y) for the pair (x, q) given the
measurement y.

(b) Our goal is to find the location of the particle, so we treat the charge q as
a nuisance parameter and marginalize the posterior density with respect
to it. Write explicitly the marginal density

P(x | y) =
∫ ∞

−∞
P(x, q | y) dq.

(c) Suppose that the true values are (x∗, q) = (1/π, 1). Using MATLAB,
simulate some measurement data using these true parameter values and
add normally distributed mean-zero noise to the measurements with some
reasonably chosen value for the standard deviation σ > 0. Assume that
q0 = 1.1 and visualize the posterior density, trying out a range of different
values for the standard deviation γ > 0 corresponding to the charge. How
does the level of uncertainty in the charge affect the posterior density?

6. Let x, y, η ∈ R and consider a simple Bayesian inverse problem

y =
1

2
x+ η

with additive noise η ∼ N (0, 1). Assume that the prior model for the unknown
is also Gaussian x ∼ N (0, 1

α
), where α > 0 is poorly known. It is possible to

write the conditional prior for x, given α, as

P(x|α) = α1/2

√
2π

exp

(
− 1

2
αx2

)
.



Since the parameter α is not known, it is part of the inference problem. Assume
that we set the following hyperprior density for the parameter α:

P(α) =

{√
2
π
exp(−1

2
α2) if α > 0,

0 if α ≤ 0.

As we saw in exercise 8, the posterior density for (x, α)|y is given by

P(x, α|y) ∝ α1/2 exp

(
− 1

2

(
y − 1

2
x

)2

− 1

2
αx2 − 1

2
α2

)
for α > 0,

where the implied coefficient does not depend on x or α. Moreover, (x, α) =
(1, 1/2) is the maximum a posteriori (MAP) estimate when we observe y =
3/2. Verify numerically that (x, α) = (1, 1/2) is the MAP estimate by trying
out the following. Define the negative log-posterior

J(x, α) := −1

2
logα +

1

2

(
3

2
− 1

2
x

)2

+
1

2
αx2 +

1

2
α2

and consider the following alternating minimization algorithm:

– Set k = 0 and choose an initial guess for α, e.g., α0 = 1.

repeat

– Find the Tikhonov regularized solution

xk = argmin
x∈R

J(x, αk) = argmin
x∈R

{(
3

2
− 1

2
x

)2

+ αkx
2

}
.

– Solve α > 0 from ∂J(xk,α)
∂α

= 0 and set αk+1 = α.

– Set k ← k + 1.

until convergence

Does the sequence (xk, αk) approach (1, 1/2)?

7. Suppose our inverse problem is given by

y = Ax+ η,

where y is our observation and A ∈ RN×J is our matrix modeling the mea-
surement. Moreover, the noise distribution is given by η ∼ N (0, I). Suppose
we have that x ∼ N (0, (τ 2I + L)−1), where L ∈ RN×N is a positive definite
symmetric matrix. Moreover, the hierarchical parameter τ ∈ R is unknown
and is modelled with the density

ρhpr(τ) =

{
C exp(−τ), when τ ≥ 0

0, when τ < 0.

Write down the posterior distribution. How would you solve the maximum a
posteriori estimator?



8. Let us consider priors for two-dimensional unknowns (pixel images). Below
left is a picture with 4 rows and 5 columns, with pixel values numbered in the
Matlab convention. We use zero boundary conditions, indicated in gray. The
pixels containing the gray zeros are not part of the actual image.

0 0 0 0 0

0 f4 f8 f12 f16 f20 0

0 f3 f7 f11 f15 f19 0

0 f2 f6 f10 f14 f18 0

0 f1 f5 f9 f13 f17 0

0 0 0 0 0

f12

f7 f11 f15

f10

For defining a smoothness prior for the vector f ∈ R20 we consider two-
dimensional convolution with a discrete Laplace operator. This is done by
moving a five-point mask over the image so that the location of the mask
shown above on the right corresponds to the following element (with index 11)
in the result of the convolution: −4f11 + f7 + f10 + f12 + f15. In the above case
the matrix would be

L =



-4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 -4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 -4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 -4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 -4 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 -4 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 -4 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 -4 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 -4 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 -4 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 -4 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 -4 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 -4 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 -4 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 -4 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -4 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 -4 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 -4 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 -4


.

Produce random samples from the Gaussian prior density

πF (f) ∝ exp

(
− 1

2
fTΓ−1f

)
with different choices of covariance matrix Γ.

(a) White noise prior. Take Γ = I.

(b) Smoothness prior. Take Γ−1 = LTL with L the discrete Laplace matrix.

9. The true state of a time-varying system is v∗k = 4+ sin(0.03k), k = 1, . . . , 500.
The observational model is

yk = vk + ηk, ηk
i.i.d.∼ N (0, 0.12).

Using the random walk evolution model

vk+1 = vk + ξk, ξk
i.i.d.∼ N (0, γ2),

consider the following tasks:



(a) Simulate the measurements using v∗k and implement the Kalman filter
algorithm to compute the estimates E[vk|y1, . . . , yk], k = 1, . . . , 500. Use
the value γ = 0.1 and an initial distribution v0 ∼ N (m0, σ

2
0), where

m0 = 4 and σ0 = 1.

(b) Run the Kalman filter with different combinations of m0, σ0, and γ and
make inferences about their effects on the behavior of the estimated state.

Remark: The Kalman filter was considered in the 8th exercise sheet.

10. Consider the boundary value problem

− d

dx

(
a(x)

d

dx
u(x)

)
= 1 for x ∈ (0, 1),

u(0) = 0,

u′(1) = 0.

It is well-known that this problem can be solved for u as

u(x) =

∫ x

0

1− y

a(y)
dy. (1)

Let xk = hk, h = 1/100, k = 0, . . . , 100. The integral in (1) can be discretized
using the trapezoidal rule as∫ xk

0

F (y) dy ≈ h
k∑

i=1

F (xi) + F (xi−1)

2
for k = 1, . . . , n with F (y) :=

1− y

a(y)
.

This leads to the discrete measurement model

u = G
1

a
, (2)

where G ∈ R100×101, u = [u(x1), . . . , u(x100)]
T, a = [a(x0), . . . , a(x100)]

T, and
1
a
= 1./a =

(
1

a(xi−1)

)101
i=1

denotes the elementwise reciprocal vector of a.

Let us consider the inverse problem of recovering a based on noisy measure-
ments u using the statistical inversion paradigm. Download the file pde.mat

from the course website and run

load pde u

in MATLAB.1 The vector u contains the values of u at the grid points x1, . . . , x100,
contaminated with i.i.d. additive Gaussian noise with mean 0 and standard de-
viation 0.1 % relative to the maximal data component. Here, you can estimate
the noise level of the measurements as

σ = 10−3 · max
i,j=1,...,100

|u(i)− u(j)|.

1In Python: import scipy.io and run u = scipy.io.loadmat(’pde.mat’)[’u’]



In addition, suppose that we know a priori that the unknown coefficient a(x)
is very smooth. This suggests using a smoothness prior

πpr(a) ∝ exp

(
− 1

2ω2
∥La∥2

)
, ω > 0.

In order to avoid being overly committal with the boundary values, let us
consider the so-called Aristotelian prior with

L =



δ 0
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
0 δ


∈ R101×101, δ = 0.005.

The value δ = 0.005 has been chosen here somewhat heuristically.

(a) Construct the system matrix G ∈ R100×101 in MATLAB (the commands
ones, eye, tril, and diag may be useful) and write down the explicit
formulae of the likelihood and posterior densities for this inverse problem.

(b) Explain why the maximum a posteriori (MAP) estimate for the prob-
lem (2) can be obtained by solving the minimization problem

aMAP = argmin
a∈R101

{∥∥∥∥u−G
1

a

∥∥∥∥2

+ λ2∥La∥2
}
, λ =

σ

ω
.

Define the objective function S(a) := ∥u−G 1
a
∥2+λ2∥La∥2 and consider

the following algorithm for solving the minimization problem.

Gauss–Newton algorithm. Write the objective function as

S(a) =
201∑
i=1

ri(a)
2, where ri(a) =

{
(u−G 1

a
)i if 1 ≤ i ≤ 100,

λ(La)i−100 if 101 ≤ i ≤ 201.

Starting from an initial guess a(0) for the minimum, iterate

a(k+1) = a(k) − J+r(a(k)) for k = 0, 1, 2, . . . ,

where r(a) = [r1(a), . . . , r201(a)]
T, J = (Ji,j)1≤i≤201, 1≤j≤101 is the

Jacobi matrix of r(a(k)) defined elementwise as

Ji,j =
∂ri
∂aj

(a(k)) for 1 ≤ i ≤ 201, 1 ≤ j ≤ 101, (3)

and J+ denotes the Moore–Penrose pseudoinverse of the matrix
J (see the command pinv in MATLAB / numpy.linalg.pinv in
Python).
(See also: https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_
algorithm)

https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_algorithm
https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_algorithm


For this problem, the Jacobi matrix (3) can be written (using MATLAB
notation) as J = [G ∗ diag(power(a,−2)); lambda ∗ L], where a denotes
the kth iterate a(k) and lambda stands in for λ.

Implement the Gauss–Newton algorithm and compute the (approximate)
MAP estimate aMAP. In order to find a good value for ω > 0, use the
Morozov discrepancy principle, i.e., ensure that the condition ∥u−G 1

a
∥ ≈

σ
√
100 holds approximately. Here, it is generally a good idea to use a(0) =

ones(101, 1) as the initial guess for your experiments.

(c) Define what is meant by the conditional mean (CM) estimate of a.
Then, using your favorite MCMC method (for example, the random walk
Metropolis–Hastings algorithm works well here), compute the (approxi-
mate) CM estimate of a using the value for ω that you obtained in part
(b). Compare your CM reconstruction with the MAP estimate you ob-
tained in part (b). Do they look alike? How did you assess the convergence
and quality of your MCMC sampler?


