Sommersemester 2023
Return your written solutions either in person or by email
to vesa.kaarnioja@fu-berlin.de by Tuesday 6 June, 2023, 10:15
Please note that there will be no lecture on Monday 29 May and that we will have a "bonus" live-coding lecture in place of the exercise session on Tuesday 30 May, 10:15

Please note that there are a total of 4 tasks in this exercise sheet.

1. Let $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^{m}$, and consider the equation $A x=y$. Prove that the corresponding Landweber-Fridman iterates $\left\{x_{k}\right\}_{k=0}^{\infty}$ can be written explicitly as

$$
x_{k}=\beta \sum_{j=0}^{k-1}\left(I-\beta A^{\mathrm{T}} A\right)^{j} A^{\mathrm{T}} y, \quad k=1,2, \ldots .
$$

Moreover, with the help of a singular system $\left(\lambda_{j}, v_{j}, u_{j}\right)$ of A, show that this is equal to

$$
x_{k}=\sum_{j=1}^{p} \frac{1}{\lambda_{j}}\left(1-\left(1-\beta \lambda_{j}^{2}\right)^{k}\right)\left(u_{j}^{\mathrm{T}} y\right) v_{j}, \quad k=0,1, \ldots,
$$

where $p=\operatorname{rank}(A)$.
2. Let $B \in \mathbb{R}^{n \times n}$ be a symmetric and positive definite matrix, and assume that $x \in \mathbb{R}^{n}$ is the solution of $B x=w$ for some given $w \in \mathbb{R}^{n}$. If one approximates x using the conjugate gradient method with the initial guess $x_{0} \in \mathbb{R}^{n}$, it is known that the $k^{\text {th }}$ iterate satisfies (you are not required to prove this)

$$
\begin{equation*}
\left\|x-x_{k}\right\|_{B} \leq\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}\left\|x-x_{0}\right\|_{B}, \quad k=1,2, \ldots \tag{1}
\end{equation*}
$$

where $\|z\|_{B}^{2}=z^{\mathrm{T}} B z$ and $\kappa=\mu_{\max } / \mu_{\text {min }}$ is the condition number of B, i.e., it is the ratio of the largest eigenvalue $\mu_{\max }$ and the smallest eigenvalue $\mu_{\min }$ of B.
(a) Show that $\mu_{\text {min }}^{1 / 2}\|z\| \leq\|z\|_{B} \leq \mu_{\max }^{1 / 2}\|z\|$ for all $z \in \mathbb{R}^{n}$, where $\|\cdot\|$ denotes the standard Euclidean norm in \mathbb{R}^{n}.
(b) Using the result in part (a), derive an error estimate in the standard Euclidean norm induced by (1). That is, derive an estimate for $\left\|x-x_{k}\right\|$ in terms of $\left\|x-x_{0}\right\|$, the condition number κ, and the iteration index k.
(c) Let $A \in \mathbb{R}^{m \times n}, y \in \mathbb{R}^{m}$, and let $x_{\delta} \in \mathbb{R}^{n}$ be a Tikhonov regularized solution to $A x=y$. Consider solving the corresponding normal equation

$$
\left(A^{\mathrm{T}} A+\delta I\right) x=A^{\mathrm{T}} y
$$

with the conjugate gradient method starting from some initial guess $x_{0} \in \mathbb{R}^{n}$. Suppose that $\operatorname{rank}(A)<n$, which is a sound assumption (at
least up to the numerical precision) if A corresponds to an inverse/illposed problem. Use part (b) to write an estimate for $\left\|x_{\delta}-x_{k}\right\|$ with the help of the largest singular value of A, i.e., $\lambda_{1}=\|A\|$, the regularization parameter $\delta>0$, the iteration index k, and the initial error $\left\|x_{\delta}-x_{0}\right\|$.
3. Let us revisit the X-ray tomography problem from last week's exercises. On the course's homepage at
https://www.mi.fu-berlin.de/math/groups/naspde/teaching/InversePf:oblems. html
you can download the file sino.mat. The file contains a sparse tomography matrix $A \in \mathbb{R}^{2500 \times 1600}$, a noisy sinogram $S \in \mathbb{R}^{50 \times 50}$, and the dimension of the original object $N=40$. In Python, you can use the script

```
import numpy as np
from scipy import sparse
import scipy.io
data = scipy.io.loadmat('sino.mat')
A = data['A']
S = data['S']
N = int(data['N'])
```

to access the contents, while the data can be imported into MATLAB with the command
load sino A S N

Your task is to reconstruct the object corresponding to the given sinogram S. First, form the vectorized sinogram: in Python, this can be achieved with

```
y = np.transpose(S).reshape((S.size,)) # transpose required
# since matrix A was
# generated in MATLAB!!
```

while in MATLAB you may use $\mathrm{y}=\mathrm{S}(:)$. Then use Landweber-Fridman iteration to solve the equation

$$
A x=y .
$$

Use $\beta=0.3$ and the Morozov discrepancy principle with

$$
\varepsilon=\sqrt{0.01^{2} \cdot 50^{2}}=0.50
$$

which is the square root of the expected value for the squared norm of the (vectorized) noise, under the assumption that each pixel of the sinogram S is contaminated with normally distributed additive noise with zero mean and standard deviation 0.01 . Visualize the resulting reconstruction after using X = xdelta.reshape($(40,40)$).T (Python) / X = reshape(xdelta, 40,40$)$
(MATLAB) to reshape the reconstruction into an image. Plot also the value of the residual

$$
f(k):=\left\|A x_{k}-y\right\|
$$

as a function of k. Here, $\left\{x_{k}\right\}$ denote the Landweber-Fridman iterates. Why is $\beta=10$ a bad choice? How about $\beta=0.001$?
4. Consider solving the inverse problem in task 3 using the conjugate gradient method. Let $A \in \mathbb{R}^{2500 \times 1600}, S \in \mathbb{R}^{50 \times 50}$, and $y \in \mathbb{R}^{2500}$ be as before. Starting from the initial guess $x_{0}=0$, use the conjugate gradient method to solve the normal equation

$$
A^{\mathrm{T}} A x=A^{\mathrm{T}} y .
$$

Use the Morozov discrepancy principle with

$$
\varepsilon=\sqrt{0.01^{2} \cdot 50^{2}}=0.50
$$

as the stopping rule: terminate the iteration when the norm of the residual corresponding to the original equation is less than ε, i.e., when

$$
\left\|A x_{k}-y\right\| \leq \varepsilon .
$$

Visualize the reconstruction after using $X=$ xdelta.reshape ($(40,40)$). T(Python) or $\mathrm{X}=$ reshape (xdelta, 40,40) (MATLAB) to reshape the reconstruction into an image, and plot the value of the residual

$$
f(k):=\left\|A x_{k}-y\right\|
$$

as a function of k. Here, $\left\{x_{k}\right\}$ denote the conjugate gradient iterates. How many iterations does it take to satisfy the Morozov criterion? Visualize also the reconstruction that results from 1000 rounds of conjugate gradient iterations.

