
Inverse Problems Exercise 5
Sommersemester 2023
Return your written solutions either in person or by email
to vesa.kaarnioja@fu-berlin.de by Tuesday 6 June, 2023, 10:15
Please note that there will be no lecture on Monday 29 May and that we will
have a “bonus” live-coding lecture in place of the exercise session on Tuesday
30 May, 10:15

Please note that there are a total of 4 tasks in this exercise sheet.

1. Let A ∈ Rm×n and y ∈ Rm, and consider the equation Ax = y. Prove that the
corresponding Landweber–Fridman iterates {xk}∞k=0 can be written explicitly
as

xk = β
k−1∑
j=0

(I − βATA)jATy, k = 1, 2, . . . .

Moreover, with the help of a singular system (λj, vj, uj) of A, show that this
is equal to

xk =

p∑
j=1

1

λj

(1− (1− βλ2
j)

k)(uT
j y)vj, k = 0, 1, . . . ,

where p = rank(A).

2. Let B ∈ Rn×n be a symmetric and positive definite matrix, and assume that
x ∈ Rn is the solution of Bx = w for some given w ∈ Rn. If one approximates
x using the conjugate gradient method with the initial guess x0 ∈ Rn, it is
known that the kth iterate satisfies (you are not required to prove this)

∥x− xk∥B ≤
(√

κ− 1√
κ+ 1

)k

∥x− x0∥B, k = 1, 2, . . . , (1)

where ∥z∥2B = zTBz and κ = µmax/µmin is the condition number of B, i.e., it
is the ratio of the largest eigenvalue µmax and the smallest eigenvalue µmin of
B.

(a) Show that µ
1/2
min∥z∥ ≤ ∥z∥B ≤ µ

1/2
max∥z∥ for all z ∈ Rn, where ∥ · ∥ denotes

the standard Euclidean norm in Rn.

(b) Using the result in part (a), derive an error estimate in the standard
Euclidean norm induced by (1). That is, derive an estimate for ∥x− xk∥
in terms of ∥x− x0∥, the condition number κ, and the iteration index k.

(c) Let A ∈ Rm×n, y ∈ Rm, and let xδ ∈ Rn be a Tikhonov regularized
solution to Ax = y. Consider solving the corresponding normal equation

(ATA+ δI)x = ATy

with the conjugate gradient method starting from some initial guess
x0 ∈ Rn. Suppose that rank(A) < n, which is a sound assumption (at



least up to the numerical precision) if A corresponds to an inverse/ill-
posed problem. Use part (b) to write an estimate for ∥xδ − xk∥ with the
help of the largest singular value of A, i.e., λ1 = ∥A∥, the regularization
parameter δ > 0, the iteration index k, and the initial error ∥xδ − x0∥.

3. Let us revisit the X-ray tomography problem from last week’s exercises. On
the course’s homepage at

https://www.mi.fu-berlin.de/math/groups/naspde/teaching/InverseProblems.

html

you can download the file sino.mat. The file contains a sparse tomography
matrix A ∈ R2500×1600, a noisy sinogram S ∈ R50×50, and the dimension of the
original object N = 40. In Python, you can use the script

import numpy as np

from scipy import sparse

import scipy.io

data = scipy.io.loadmat(’sino.mat’)

A = data[’A’]

S = data[’S’]

N = int(data[’N’])

to access the contents, while the data can be imported into MATLAB with
the command

load sino A S N

Your task is to reconstruct the object corresponding to the given sinogram S.
First, form the vectorized sinogram: in Python, this can be achieved with

y = np.transpose(S).reshape((S.size,)) # transpose required

# since matrix A was

# generated in MATLAB!!

while in MATLAB you may use y = S(:). Then use Landweber–Fridman
iteration to solve the equation

Ax = y.

Use β = 0.3 and the Morozov discrepancy principle with

ε =
√
0.012 · 502 = 0.50,

which is the square root of the expected value for the squared norm of the
(vectorized) noise, under the assumption that each pixel of the sinogram
S is contaminated with normally distributed additive noise with zero mean
and standard deviation 0.01. Visualize the resulting reconstruction after using
X = xdelta.reshape((40,40)).T (Python) / X = reshape(xdelta,40,40)

https://www.mi.fu-berlin.de/math/groups/naspde/teaching/InverseProblems.html
https://www.mi.fu-berlin.de/math/groups/naspde/teaching/InverseProblems.html


(MATLAB) to reshape the reconstruction into an image. Plot also the value
of the residual

f(k) := ∥Axk − y∥

as a function of k. Here, {xk} denote the Landweber–Fridman iterates. Why
is β = 10 a bad choice? How about β = 0.001?

4. Consider solving the inverse problem in task 3 using the conjugate gradient
method. Let A ∈ R2500×1600, S ∈ R50×50, and y ∈ R2500 be as before. Starting
from the initial guess x0 = 0, use the conjugate gradient method to solve the
normal equation

ATAx = ATy.

Use the Morozov discrepancy principle with

ε =
√
0.012 · 502 = 0.50

as the stopping rule: terminate the iteration when the norm of the residual
corresponding to the original equation is less than ε, i.e., when

∥Axk − y∥ ≤ ε.

Visualize the reconstruction after using X = xdelta.reshape((40,40)).T (Python)
or X = reshape(xdelta,40,40) (MATLAB) to reshape the reconstruction
into an image, and plot the value of the residual

f(k) := ∥Axk − y∥

as a function of k. Here, {xk} denote the conjugate gradient iterates. How
many iterations does it take to satisfy the Morozov criterion? Visualize also the
reconstruction that results from 1000 rounds of conjugate gradient iterations.


