Return your written solutions either in person or by email
to vesa.kaarnioja@fu-berlin.de by Tuesday 13 June, 2023, 10:15

1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, where Ω is a sample space, \mathcal{F} is a σ algebra of measurable events (subsets) of Ω, and \mathbb{P} is a probability measure on \mathcal{F}. Let $E=\bigcup_{j \in \mathcal{I}} E_{j}$ be a union of measurable sets $E_{j} \in \mathcal{F}, j \in \mathcal{I}$, such that $\mathbb{P}\left(E_{j}\right)=0$.
(a) Show that $\mathbb{P}(E)=0$ if \mathcal{I} is a countable index set.
(b) Show an example where $\mathbb{P}(E)>0$ if \mathcal{I} is an uncountable index set.
2. Let $X \sim \mathcal{N}\left(x_{0}, C\right)$ be a Gaussian random variable with mean $x_{0} \in \mathbb{R}^{n}$ and covariance matrix $C \in \mathbb{R}^{n \times n}$, which is symmetric and positive definite. What is $\mathbb{E}\left\|X-x_{0}\right\|_{2}^{2}$?
3. Let $z_{1} \sim \mathcal{N}\left(m_{1}, C_{1}\right)$ and $z_{2} \sim \mathcal{N}\left(m_{2}, C_{2}\right)$ be independent Gaussian random variables with means $m_{1}, m_{2} \in \mathbb{R}^{k}$ and symmetric, positive definite covariance matrices $C_{1}, C_{2} \in \mathbb{R}^{k \times k}$. Show that

$$
z=a_{1} z_{1}+a_{2} z_{2} \sim \mathcal{N}\left(a_{1} m_{1}+a_{2} m_{2}, a_{1}^{2} C_{1}+a_{2}^{2} C_{2}\right)
$$

4. Let $z \sim \mathcal{N}(m, C)$ be a Gaussian random variable with mean $m \in \mathbb{R}^{k}$ and let $C \in \mathbb{R}^{k \times k}$ be a symmetric, positive definite covariance matrix. Let $L \in \mathbb{R}^{d \times k}$ and $a \in \mathbb{R}^{d}$. Show that

$$
w=L z+a \sim \mathcal{N}\left(L m+a, L C L^{\mathrm{T}}\right) .
$$

