Sommersemester 2023
Return your written solutions either in person or by email
to vesa.kaarnioja@fu-berlin.de by Tuesday 20 June, 2023, 10:15

1. Consider the following multiplicative noise model

$$
y_{j}=a_{j} x_{j}, \quad 1 \leq j \leq n,
$$

where $y, x, a \in \mathbb{R}^{n}$, and assume that a is a log-normally distributed multiplicative noise vector with independent components, that is, $\log a_{j} \sim \mathcal{N}\left(\log a_{0}, \sigma^{2}\right)$. Furthermore, a is assumed to be independent of x. By taking the logarithm, the noise model becomes additive. Using this observation, derive the likelihood density $\mathbb{P}(y \mid x)$ for such $x \in \mathbb{R}^{n}$ that $x_{j}>0$ for all $j=1, \ldots, n$.
2. Consider the linear inverse problem

$$
\begin{equation*}
y=A x+\eta, \tag{1}
\end{equation*}
$$

where $x \in \mathbb{R}^{d}$ is the unknown, $y \in \mathbb{R}^{k}$ is the observation, $\eta \in \mathbb{R}^{k}$ is additive measurement noise, and $A \in \mathbb{R}^{k \times d}$ is the matrix modeling the measurement. Moreover, suppose that the noise distribution is given by $\eta \sim \mathcal{N}(0, I)$ and the prior distribution by $x \sim \mathcal{N}(0, C)$, where $C \in \mathbb{R}^{d \times d}$ is a symmetric and positive definite matrix.
(a) Form the posterior density $\pi^{y}(x)$.
(b) Notice that the MAP estimator is precisely the minimizer of $-\log \left(\pi^{y}(x)\right)$. Using this observation, solve the MAP estimator explicitly.

Hint: In part (b), it may be helpful to write down the Cholesky decomposition $C^{-1}=R^{\mathrm{T}} R$, where $R \in \mathbb{R}^{d \times d}$ is an upper triangular matrix.
3. The Laplace distribution is characterized by a location parameter $t \in \mathbb{R}$ and a scale parameter $b>0$. It has the probability density

$$
\pi_{t, b}(x)=\frac{1}{2 b} \exp \left(-\frac{|x-t|}{b}\right)
$$

Compute the Hellinger distance

$$
d_{\mathrm{H}}\left(\pi_{t, b}, \pi_{t, c}\right),
$$

where $b, c>0$.
4. Consider the linear inverse problem (1) with A, C, x, y, η, and $\pi^{y}(x)$ defined as in task 2 . Let $A_{\delta} \in \mathbb{R}^{k \times d}, \delta>0$, be a parametric family of matrices satisfying \dagger $\left\|A-A_{\delta}\right\| \leq C_{0} \delta$ for some constant $C_{0}>0$, and consider the perturbed system

$$
y=A_{\delta} x+\eta
$$

[^0]where $x \sim \mathcal{N}(0, C)$ and $\eta \sim \mathcal{N}(0, I)$ as before. Denote the posterior density of this perturbed system by $\pi_{\delta}^{y}(x)$.
Use the approximation theorem discussed during the lecture to verify that there exists $c>0$ such that
$$
d_{\mathrm{H}}\left(\pi^{y}, \pi_{\delta}^{y}\right) \leq c \delta
$$
for sufficiently small $\delta>0$.

[^0]: ${ }^{\dagger}$ Here, $\|A\|:=\sup _{x \in \mathbb{R}^{d} \backslash\{0\}} \frac{\|A x\|}{\|x\|}$ denotes the matrix operator norm.

