Sommersemester 2023
Return your written solutions either in person or by email
to vesa.kaarnioja@fu-berlin.de by Tuesday 27 June, 2023, 10:15
Please note that there are a total of 3 tasks in this exercise sheet.

1. Let $x, y, \eta \in \mathbb{R}$ and consider a simple Bayesian inverse problem

$$
y=\frac{1}{2} x+\eta
$$

with additive noise $\eta \sim \mathcal{N}(0,1)$. Assume that the prior model for the unknown is also Gaussian $x \sim \mathcal{N}\left(0, \frac{1}{\alpha}\right)$, where $\alpha>0$ is poorly known. It is possible to write the conditional prior for x, given α, as

$$
\mathbb{P}(x \mid \alpha)=\frac{\alpha^{1 / 2}}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} \alpha x^{2}\right)
$$

Since the parameter α is not known, it is part of the inference problem. Assume that we set the following hyperprior density for the parameter α :

$$
\mathbb{P}(\alpha)= \begin{cases}\sqrt{\frac{2}{\pi}} \exp \left(-\frac{1}{2} \alpha^{2}\right) & \text { if } \alpha>0 \\ 0 & \text { if } \alpha \leq 0\end{cases}
$$

(a) Show that the posterior density for $(x, \alpha) \mid y$ is given by

$$
\mathbb{P}(x, \alpha \mid y) \propto \alpha^{1 / 2} \exp \left(-\frac{1}{2}\left(y-\frac{1}{2} x\right)^{2}-\frac{1}{2} \alpha x^{2}-\frac{1}{2} \alpha^{2}\right),
$$

where the implied coefficient does not depend on x or α.
(b) Show that $(x, \alpha)=(1,1 / 2)$ is the maximum a posteriori (MAP) estimate when we observe $y=3 / 2$.
You may assume in parts (a) and (b) that η and (x, α) are independent.
2. Let $A \in \mathbb{R}^{k \times d}, x \in \mathbb{R}^{d}, y, \eta \in \mathbb{R}^{k}$, and consider the linear measurement model with additive noise:

$$
y=A x+\eta .
$$

During the lecture, we proved that if x is endowed with a Gaussian prior distribution $\mathcal{N}\left(x_{0}, \Gamma_{\mathrm{pr}}\right)$, the noise η is assumed to have the Gaussian distribution $\mathcal{N}\left(\eta_{0}, \Gamma_{\mathrm{n}}\right)$, and x and η are mutually independent, then the posterior distribution is Gaussian with posterior covariance

$$
\begin{equation*}
\Gamma_{\mathrm{post}}=\left(\Gamma_{\mathrm{pr}}^{-1}+A^{\mathrm{T}} \Gamma_{\mathrm{n}}^{-1} A\right)^{-1} \tag{1}
\end{equation*}
$$

and posterior mean

$$
\begin{equation*}
\mu_{\mathrm{post}}=\Gamma_{\mathrm{post}}\left(A^{\mathrm{T}} \Gamma_{\mathrm{n}}^{-1}\left(y-\eta_{0}\right)+\Gamma_{\mathrm{pr}}^{-1} x_{0}\right) \tag{2}
\end{equation*}
$$

Prove that these can alternatively be written as

$$
\begin{equation*}
\Gamma_{\mathrm{post}}=\Gamma_{\mathrm{pr}}-\Gamma_{\mathrm{pr}} A^{\mathrm{T}}\left(A \Gamma_{\mathrm{pr}} A^{\mathrm{T}}+\Gamma_{\mathrm{n}}\right)^{-1} A \Gamma_{\mathrm{pr}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{\text {post }}=x_{0}+\Gamma_{\mathrm{pr}} A^{\mathrm{T}}\left(A \Gamma_{\mathrm{pr}} A^{\mathrm{T}}+\Gamma_{\mathrm{n}}\right)^{-1}\left(y-A x_{0}-\eta_{0}\right) . \tag{4}
\end{equation*}
$$

Hint: Use the Sherman-Morrison-Woodbury formula: for any conformable matrices A, B, C, and D such that A and C are invertible (square) matrices, there holds

$$
(A+B C D)^{-1}=A^{-1}-A^{-1} B\left(C^{-1}+D A^{-1} B\right)^{-1} D A^{-1}
$$

if $A+B C D$ is invertible (or, equivalently, if $C^{-1}+D A^{-1} B$ is invertible).
Begin by applying the Sherman-Morrison-Woodbury formula on (1); this should yield the formula (3). The formula (4) can then be proved by plugging the formula (3) into (2) and simplifying the resulting expression.
3. Let $M \in \mathbb{R}^{d \times d}$ and $H \in \mathbb{R}^{k \times d}$. Suppose that we have a sequence of measurements $\left\{y_{j}\right\}_{j \geq 1} \subset \mathbb{R}^{k}$ which correspond to a sequence of unknown states $\left\{x_{j}\right\}_{j \geq 1} \subset \mathbb{R}^{d}$.
(a) Suppose that the states obey an evolution model

$$
\begin{equation*}
x_{j+1}=M x_{j}+\xi_{j+1}, \quad \xi_{j+1} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0, \Sigma), \tag{5}
\end{equation*}
$$

where $\Sigma \in \mathbb{R}^{d \times d}$ is a symmetric and positive definite covariance matrix. If $x_{j} \sim \mathcal{N}\left(m_{j}, C_{j}\right)$, where $m_{j} \in \mathbb{R}^{d}$ and $C_{j} \in \mathbb{R}^{d \times d}$ is symmetric and positive definite, what is the distribution of x_{j+1} ?
(b) Suppose that we have an observation model

$$
\begin{equation*}
y_{j+1}=H x_{j+1}+\eta_{j+1}, \quad \eta_{j+1} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0, \Gamma), \tag{6}
\end{equation*}
$$

where $\Gamma \in \mathbb{R}^{k \times k}$ is a symmetric and positive definite covariance matrix. The measurement y_{j+1} is given, with x_{j+1} and η_{j+1} assumed to be independent. Using the distribution you obtained in part (a) as the prior for x_{j+1}, what is the posterior distribution of $x_{j+1} \mid y_{j+1}$?
(c) Consider the evolution-observation model (5)-(6) and suppose that we are interested in finding the probability distribution of $x_{j+1} \mid y_{1}, \ldots, y_{j+1}$ (i.e., we wish to estimate the state at some future time step $j+1$ given measurements at all previous time steps $1,2, \ldots, j+1$). Consider the following updating scheme:
(i) Set $j=0$ and initialize $x_{0} \sim \mathcal{N}\left(m_{0}, C_{0}\right)$ using some known mean $m_{0} \in \mathbb{R}^{d}$ and symmetric, positive definite covariance $C_{0} \in \mathbb{R}^{d \times d}$.
(ii) (Prediction) Set $x_{j}=x_{0}$ if $j=0$ and $x_{j}=x_{j} \mid y_{1}, \ldots, y_{j}$ otherwise. Define x_{j+1} using the evolution model (5). Then $x_{j+1} \sim \mathcal{N}\left(\widehat{m}_{j}, \widehat{C}_{j}\right)$, where \widehat{m}_{j} and \widehat{C}_{j} are the mean and covariance you derived in part (a).
(iii) (Correction) Define $x_{j+1} \mid y_{j+1}$ via the observation model (6), using $x_{j+1} \sim \mathcal{N}\left(\widehat{m}_{j}, \widehat{C}_{j}\right)$ from step (ii) as the prior. Then $x_{j+1} \sim \mathcal{N}\left(m_{j+1}, C_{j+1}\right)$, where m_{j+1} and C_{j+1} are the mean and covariance you derived in part (b).
(iv) Set $j=j+1$ and return to step (ii).

This algorithm is known as the Kalman filter. It produces the so-called filtering distributions $x_{j+1} \mid y_{1}, \ldots, y_{j+1} \sim \mathcal{N}\left(m_{j+1}, C_{j+1}\right)$ for $j=0,1,2, \ldots$
Your task is to implement this algorithm numerically for the following model problem:
We wish to track the state $x_{k}:=\left[\begin{array}{c}p_{k} \\ v_{k}\end{array}\right] \in \mathbb{R}^{2}$ of a moving particle. The first component p_{k} corresponds to the position of the particle while the second component v_{k} is its velocity at time $k=0,1,2, \ldots$ You may assume that you know the initial state of the particle perfectly: $x_{0}=$ $\mathbb{E}\left[x_{0}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \in \mathbb{R}^{2}$ and $C_{0}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \in \mathbb{R}^{2 \times 2}$. The evolution model for the particle is given by $M=\left[\begin{array}{cc}1 & \Delta t \\ 0 & 1\end{array}\right] \in \mathbb{R}^{2 \times 2}$, with time step $\Delta=0.01$, and the innovation term is given by $\Sigma=\left[\begin{array}{cc}\frac{1}{4} \Delta t^{4} & \frac{1}{2} \Delta t^{3} \\ \frac{1}{2} \Delta t^{3} & \Delta t^{2}\end{array}\right] \in \mathbb{R}^{2 \times 2}$. Meanwhile, we only measure the location of the particle so the observation model is given by $H=\left[\begin{array}{cc}1 & 0\end{array}\right] \in \mathbb{R}^{1 \times 2}$ and the observational noise variance is assumed to be $\Gamma=[1] \in \mathbb{R}^{1 \times 1}$.
Implement the Kalman filter for this model problem and plot the filtered positions $\left(t_{k}, \mathbb{E}\left[p_{k} \mid y_{1}, \ldots, y_{k}\right]\right)_{k=1}^{2000}$ and velocities $\left(t_{k}, \mathbb{E}\left[v_{k} \mid y_{1}, \ldots, y_{k}\right]\right)_{k=1}^{2000}$ as a function of time $t_{k}=k \Delta t, k=1, \ldots, 2000$. To simulate the noisy measurements, you may assume that the true trajectory of the particle is given by the function $x(t)=0.1\left(t^{2}-t\right)$ for $t \in[0,20]$, and the measurements are given by $y_{k}=x\left(t_{k}\right)+\eta_{k}$, where $\eta_{k} \sim \mathcal{N}(0, \Gamma)$ is additive i.i.d. noise for $k=1, \ldots, 2000$.

Hint: Since all intermediate distributions in the Kalman filter algorithm are Gaussian (as long as the initial distribution for x_{0} is Gaussian), from a computational point of view, we only need to keep track of the means and covariances using the update formulae you derived in parts (a) and (b).

