
Inverse Problems Exercise 9
Sommersemester 2023
Return your written solutions either in person or by email
to vesa.kaarnioja@fu-berlin.de by Tuesday 4 July, 2023, 10:15

Please note that there are a total of 4 tasks in this exercise sheet.

1. Let y ∈ R2 and x ∈ R and

y =

(
2
1

)
x+ η, η ∼ N (0, γ2I2),

where I2 ∈ R2×2 is an identity matrix. Suppose that the prior distribution is
given by x ∼ N (0, 2), with x and η assumed independent. What is the posterior
distribution if we observe y = (1, 2)T? What is the posterior variance? What
happens to posterior distribution and variance under decreasing noise (γ ↓ 0)?

2. Let us consider the high-dimensional integral

Id :=

∫
[0,1]d

cos

(
2π +

d∑
i=1

xi

)
dx1 · · · dxd.

Estimate the value of this integral by implementing a Monte Carlo sampler in
your favorite programming language.

In this case, the exact value of this integral is Id = 2d cos
(
2π + d

2

)
sin(1

2
)d

(you do not need to prove this). Compute the Monte Carlo integration error
for sample sizes n = 2k, k = 0, 1, 2, . . . , 20. Try out several values for the
dimension d, for example, d = 10, 100, 1 000. What convergence rate do you
observe for the error as a function of n? Does increasing the dimension d affect
the convergence rate?
MATLAB users: rand(m,n) produces an m× n array containing uniformly
distributed random numbers between 0 and 1.
Python users: the numpy library contains the function
numpy.random.uniform(low=0.0, high=1.0, size=(m,n))

which can be used to produce an m×n array containing uniformly distributed
random numbers between 0 and 1.

3. Suppose we are given the posterior distribution

πy(x) =
1

Z
g(x, y)π(x),

where x, y ∈ R2, we have the prior density π(x) = 1
2π

exp(−1
2
(x2

1 + x2
2)), and

g(x, y) = exp(−|x1 − y21| − |x2
2 − y2|).

Here, Z =
∫
R2 g(x, y)π(x) dx.

Suppose we are given the observation y = (3, 2)T. Use importance sampling
to estimate the posterior mean.



4. Consider the Bayesian inverse problem

yj = F (x) + ηj, j ∈ {1, . . . , N}, (1)

where the unknown quantity x ∈ Rd is assumed to remain static, F : Rd → Rk

is a function, we assume Gaussian observational noise ηj
i.i.d.∼ N (0, γ2I), γ > 0,

and we assume to have N independent observations y1, . . . , yN ∈ Rk.

(a) What is the likelihood density P(y1, . . . , yN |x)?
(b) Show that

N∑
j=1

∥yj − F (x)∥2 = N∥F (x)− y∥2 +N

(
1

N

N∑
j=1

yTj yj − yTy

)
,

where y = 1
N

∑N
j=1 yj.

(c) Use parts (a) and (b) to deduce that the problem (1) is equivalent to the
Bayesian inverse problem

y = F (x) + η, η ∼ N
(
0,

γ2

N
I

)
.

Interpretation: averaging a number of independent measurements of a
static target results in variance reduction of the noise.


