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Practical matters

@ Lectures on Mondays at 10:15-12:00 in A6/025/026 by Vesa
Kaarnioja.

o Exercises on Tuesdays at 10:15-12:00 in A6/007/008 by Vesa
Kaarnioja starting next week.

o Weekly exercises published after each lecture. Please return your
written solutions to Vesa either by email (vesa.kaarnioja@fu-berlin.de)
or at the beginning of the exercise session in the following week.

@ The conditions for completing this course are successfully completing
and submitting at least 60% of the course’s exercises and successfully
passing the course exam.



Course contents

@ The first part of the course will cover classical variational
regularization methods. We will follow Chapters 1-4 in
o J. Kaipio and E. Somersalo (2005). Statistical and Computational
Inverse Problems. Springer, New York, NY.

@ Second part of the course will cover Bayesian inverse problems. We
will follow the texts

e D. Sanz-Alonso, A. M. Stuart, and A. Taeb (2018). Inverse Problems
and Data Assimilation. https://arxiv.org/abs/1810.06191

e J. Kaipio and E. Somersalo (2005). Statistical and Computational
Inverse Problems. Springer, New York, NY.

o D. Calvetti and E. Somersalo (2007). Introduction to Bayesian
Scientific Computing: Ten Lectures on Subjective Computing.
Springer, New York, NY.



What is an inverse problem?

e Forward problem: Given known causes (initial conditions, material
properties, other model parameters), determine the effects (data,
measurements).

o Inverse problem: Observing the effects (noisy data), recover the
cause.

Forward problem

—
Inverse problem
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Figure: Computerized tomography (CT)
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Figure: Image deblurring (deconvolution)

y:(K*f)(x):/ K(x — x")f(x")dx
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Introduction: What is an inverse problem?

We consider the indirect measurement of an unknown physical quantity

x € X. The measurement y € Y is related to the unknown by a physical
or mathematical mode/

y = F(x), (1)
where F: X — Y is called the forward mapping.

@ Computing y for a given x is called the forward problem.

e Finding x for a given measurement y (the data) is called the inverse
problem.

The inverse problem is often ill-posed, making it more difficult than the
corresponding direct problem.



A problem is called well-posed (in the sense of Hadamard), if

p
(a) a solution exists,
(b) the solution is unique, and
)

(c) the solution depends continuously on the data.

If one or more of these conditions are violated, the problem is called
ill-posed.

Some examples of ill-posed inverse problems are X-ray tomography, image
deblurring, the inverse heat equation, and electrical impedance
tomography (EIT).

The ill-posedness of an inverse problem poses a challenge because usually,
errors are present in the measurements. Incorporating these into model (1)
in the form of additive noise 1 leads to a more realistic model

y = F(x)+n.



The violation of the above conditions leads to various difficulties.

e If condition (a) is violated, i.e., if the image Ran(F) of F does not
cover the whole space Y, then there may not exist a solution to
F(x) =y for noisy data y = F(x') + 1 created by a ground truth xf,
although a solution exists for noise free data y = F(x'), since 1 does
not need to lie in Ran(F).

e If condition (c) is violated, then the solution to F(x) = y for noisy
data y = F(x") + 7 may be far away from the solution for noise free
data y = F(XT), even if F is invertible and the noise 7 is small, due to
the discontinuity of F~1.



Example.

The deblurring (or deconvolution) problem of recovering an input signal x
from an observed signal y (possibly contaminated by noise) occurs in
many imaging as well as image and signal processing applications. The
mathematical model is

y() = [ ale—s)x(s)ds

—00

=:(axx)(t)
where the function a is known as the blurring kernel.

If 3is “nice”, we can use the Fourier transform together with the
convolution theorem to solve the problem analytically:

y(t) = (@* Xexact)(t) & Y(§) = aA()Xexact(§) & Xexact(§) = @

S Xexact(t) =F1{Z}(t) = ;ﬂ/ie"féggdg.

a

Here, Xxoxact denotes the solution to this problem with exact, noiseless data.



However, if we can only observe noisy measurements, we must consider

y(t) = (axx)(t) +0(t) & y(§) = a(§)x(&) +1(E)-
The solution formula from the previous slide gives (in the Fourier side)

. ¥ o 1(¢)
X = <5 =X et
(5) a(é—) exact(g) + a(é—)
then we apply the inverse Fourier transform on both sides. However, this
reconstruction might not be well-defined and it is typically not stable, i.e.,
it does not depend continuously on the data y. The kernel a usually
decreases exponentially (or has compact support). A typical example is a

Gaussian kernel
B 1 t2
a(t) = —=exp| ——
2wal P 202

for some o > 0.



By the Plancherel theorem, 3 € L2(R) and

[ latorac= [ o

if a € L2(R). This implies in particular that 2(¢) — 0 as |£| — oco. As a
consequence, high frequencies 7)(§) of the noise get amplified arbitrarily
strong in X. Thus, even the presence of small noise can lead to large
changes in the reconstruction.



Case study: parallel-beam X-ray tomography
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Case study: parallel-beam X-ray tomography




Let us consider the following phantom (botton left), which we use to
simulate measurements taken from 60 angles contaminated with 5 %
Gaussian noise (sinogram on the bottom right). Inverse problem: use the
sinogram data (X-ray images taken from the different directions) to
reconstruct the internal structure of the physical body (i.e., the phantom).

Technical (but important) note: to avoid the so-called inverse crime, the
measurements for the inversion on the following page were generated using
a higher resolution phantom.

Formation of a CT sinogram (Samuli Siltanen):
https://www.youtube.com/watch?v=q7Rt_0Y_7tU


https://www.youtube.com/watch?v=q7Rt_OY_7tU

Reconstructions arg min{||Ax — m||? + R(x)} from noisy measurements m

X
with some selected penalty terms R are given immediately below.

0

Left: reconstruction with total variation regularization. Right: same with Tikhonov regularization.

Some other reconstructions for comparison (and the target phantom).

Left: filtered back projection. Middle: unfiltered back projection. Right: ground truth.



Electrical impedance tomography

Use measurements of current and voltage collected at electrodes covering
part of the boundary to infer the interior conductivity of an object/body.
Es 4

V-(eVu)=0 inD,

ogt =0 on dD\ Ui_, Ex,
u+zk0 =Ux onEy ke{l,..., L
Je. a—,“,ds_/k, ke{l,..., L},




@ Successful solution of inverse problems requires specially designed
algorithms that can tolerate errors in measured data.

@ How to incorporate all possible prior and expert knowledge about the
possible solutions when solving inverse problems?

@ The statistical approach to inverse problems aims to quantify how
uncertainty in the data or model affects the solutions obtained in
problems.



Preliminary functional analysis



Inner product space

A real vector space X is an inner product space if there exists a mapping
(+,): X x X — R satisfying
o (ax1 + bxo,y) = a(x1,y) + b(xa,y) for all x;,x2,y € X and a,b € R;
o (x,y) = (y,x) for all x,y € X;
@ (x,x) >0 for all x € X, where equality holds iff x = 0.
A mapping (-, -) satisfying these conditions is called an inner product.
Example

i) R" = {(x1,...,xn) | xx € R}. Then the inner product is the Euclidean dot product
n
(Gy) =D ks x= (X1, m), ¥ = (V15 yn)-
k=1
i) Let X = C([a, b]) = {f | f: [a,b] = R is continuous} and define

b
(fe) = [ (g dx.
a
Then this is an inner product on C([a, b]).

i) Let X = 2(R) = {(zx)$2, | %21 |zk|> < 0o}. Then £2(R) is an inner product space when

oo
Yy =D Xy x=(xa,,.), vy =1,y
k=1




Definition
A real vector space X is a normed space if there exists a mapping
|| - || X — R satisfying

o |lax|| = |al|||x|| for all a € R and x € X;

@ ||x|| > 0 for all x € X, where equality holds iff x = 0.

o [[x+yl|l < |Ix|| + |ly|| for all x,y € X (triangle inequality).

If X is an inner product space, then it is a normed space in a canonical
way with the induced norm || - ||: X — R defined by

x| = V{x,x), xe€X.

The first two postulates follow immediately from the properties of inner
product spaces, the triangle inequality follows from the Cauchy—Schwarz
inequality.

Proposition (Cauchy—Schwarz inequality)
If (X, {-,-)) is an inner product space, then

[y < [Ixllllyll - for all x,y € X.




Proof. Let x,y € X and t € R. If x =0 or y = 0, then the claim is trivial.
Suppose that x # 0 £ y. Then

0 < (x+ty,x+ ty) = |Ix||* + 2t(x, ) + 2[|y]*.

This is a second degree polynomial w.r.t. t with at most 1 real root.
Hence,

discriminant <0 < 4[(x,y)|> — 4| x|]?|ly|> < 0
& P < IxPlly ).

Note that if y = ax, a € R, then discriminant = 0 and Cauchy-Schwarz
holds with equality. O

The triangle inequality is an immediate consequence of Cauchy—Schwarz:

Ix +ylI? = (x+ v, x +y) = [Ix[1* + |y > + 2(x, )
< [l + [y 112 + 200, y)] < IIxI2 + Dy l12 + 20y |
= (Ilxll + llyll)* for all x,y € X.



For our purposes, having an inner product is not enough. We need to
know that these spaces are also complete normed spaces.

Definition (Cauchy sequence)

A sequence (xx)72; of elements of (X, || - ||) is called a Cauchy sequence if
for all € > 0, there exists N € N such that

mn>N = |xnm— x| <e.

Definition (Complete space)

A normed space (X, || - ||) is complete if all Cauchy sequences in X
converge to an element of X.

Definition (Banach space)

A normed space (X, || - ||) which is complete with respect to || - || is a
Banach space.

Definition (Hilbert space)

An inner product space (H, (-,-)) which is complete with respect to
Il - |l = \/(:,-) defined by the inner product is a Hilbert space.




Example
i) R" and £*(R) are complete.
i) C([a, b]) is not complete w.r.t. the norm

b
IFI? = / ()2 dx.

Let a= —1, b=1, and define

0, -1<x<0,
fo(x) == ¢ nx, 0<x<1i
1, l<x<i

0, -1<x<0
Then f, is continuous, and if H(x) = xp,1j(x) = {1’ =X= e have

0<x<1,

1 1/n 1/n
/ |fn(x)—H(x)|2dx:/ |nx—1|2dx:/ (n°x* — 2nx + 1) dx
—1 0 0

n?3 ) <Unoo 1 1 1 1 e
= — nx" +x = =— —
3 =0 3n .n n 3n

We have ||f, — H|| = 0, but H ¢ C([-1,1]).

However, note that C([a, b]) is complete w.r.t. the sup-norm ||f||cc = sup,<,, |f(x)|

but || - || # || - || and there is no inner product inducing || - ||oc-norm.



Bounded linear operators in Hilbert spaces

Definition

Let X and Y be normed spaces with norms || - ||x and || - ||y. A linear operator
A: X — Y is said to be bounded if there exists C > 0 such that

[Ax|ly < Cl|x||x forall x € X.

Lemma
Let (X,]| - |lx) and (Y, ]| - ||v) be normed spaces. Then a linear operator A: X — Y is
bounded iff
1Al == |Allx=y = sup [JAx]|y < oo. (operator norm)
lIxlx<1

v

Proof. “=" If there is C > 0 s.t. ||Ax||y < C||x||x for all x € X, then clearly
Al = supy <1 IAX]ly < C.
<" Let [|A] < occ. Since || 7 [lx =1 for all x # 0, from the linearity of A we infer

Ly — | A(2)lly < JIA] for all x € X.

lTxIx
This implies the important estimate

IAx|ly < |Alllix]lx for all x € X.



A linear operator is continuous precisely when it is bounded.
Proposition

Let (X,]|| - ||x) and (Y, || - ||v) be normed spaces and A: X — Y a linear operator. Then
the following are equivalent:

(i) A is a bounded operator;
(ii) A is continuous (in X);

(iii) A is continuous at one point xo € X.

Proof. (i) = (ii): if x,y € X and € > 0, then
9 A linear

lx = yllx < TA] = § = A =Aylly " =" A =y)lly < [AlllIx —yllx <e.
(ii) = (iii): trivial.
(iii) = (i): let A be continuous at xo € X. By definition, there exists § > 0 such that

[y =xllx <6 = [|[Ay = Axlly < 1.
If x € X is such that ||x||x < J, then by taking y = x + xo:
[Ax[ly = [|A(x + x0) — Axo|ly < 1.

On the other hand, for any ||x||x <1, there holds [|dx||x = d||x||x < d and thus

SIAX]ly = |ABX)|ly <1, e, [Ax|ly < % for all [|x||x < 1.

Therefore ||A|| < 1, meaning that A is bounded. O




Let H be a real Hilbert space.
Definition
Two elements x,y € H are said to be orthogonal if (x,y) = 0.

Let M C H be a subset. The orthogonal complement of M in H is defined
as
Mt ={yeH|(x,y)=0 forall xc Mj}.

We state the following easy consequences.

Lemma
For any subset M C H, M* is a closed subspace of H and M C (M~+)+.

v

Lemma

If M is a subspace of H, then (M+)+ = M.
If M is a closed subspace of H, then (M*)+ = M.




Proposition (Hilbert projection theorem)

Let M be a nonempty, closed, and convex! subset of a real Hilbert space H. Then there
exists a unique element xo € M satisfying

ol < [Ix| - for all x € M.

Proof. Let § = inf{||x| | x € M}. We use the parallelogram identity
lu+ v|®+ |lu—v|* = 2||lu|* + 2||v||* applied to vectors u = 1x and v = Ly, x,y € M,
to obtain

1 2 Lo, 1 [xty’
2l =yl = 1P+ Sl - |
Due to convexity 1(x +y) € M, so
Ix — yl* <2||x|]> 4 2|ly||> — 46> for all x,y € M. 2)

k— o0

Existence: let (xk)2; C M s.t. ||xk|| ——— 4. Substituting x <— x, and y < xm in (2)
yields ||, — Xm||> < 2|[xa||> + 2||xm]|* — 46, since (xn + Xm) € M for all n, m. Thus
X — Xm|| = 0 as n,m — oco. (xx)iZ; is Cauchy in the Hilbert space H, so there exists
X0 := limk00 Xk € H. Since || - || is continuous, |[xo]| = limk— oo [|Xk|| = &. Since M is
closed and (xx)72; C M, the limit xo € M.

Uniqueness: If ||x|| = [ly|| =6 = ||x — y||> <0 by (2) and so x = y. O

Ttx + (1 - t)y € Mforall x,y € M, t € (0,1).



Corollary

Let H be a real Hilbert space, M a nonempty, closed, and convex subset of
H, and x € H. Then there exists a unique element yy € M such that

Ix = wl <|Ix—yl| forallye M.

Proof. The set x — M :={x —y | y € M} is closed and convex, and
min{||x —y|| | x —y € x = M} = min{||x — y|| | y € M}. The claim
follows from the previous result. []

Proposition (Orthogonal decomposition)

If M is a closed subspace of a real Hilbert space H, then
H=Ma M*+,
which means that every element y € H can be uniquely represented as

y=x+x", xeM, xte M.




Proof. It suffices to prove that M N M+ = {0} and M + M+ = H.

o If x € MN ML, then 0= (x,x) = ||x]|? (i.e., x L x) so x = 0.
oMMt = {0}

e Let x € H. The Hilbert projection theorem guarantees that there exists
a unique yp € M such that

Ix = yoll < [lx —yl| forally e M. (3)

Let xp = x — yp so that x = yg + xp € M + xp. It remains to show that
Xo € ML,
The inequality (3) can be written as

x|l < ||z|| forall ze x— M.

Since yp € M and M is a vector space, yg + M = M and M = —M which
implies x — M = x4+ M = yo 4+ xo + M = xo + M. The previous inequality
can be recast as

x|l < |lz]| forallzexg+M <& ||xof <|xo+z| forallze M.

This statement is true if and only if (xp,z) = 0 for all z € M. Therefore
X0 € M.



Let M be a closed subspace. The orthogonal decomposition implies that
every element y € H can be uniquely represented as

y:x—i—xj‘7 xe M, xt e M.

Lemma
Let M C H be a closed subspace. The mapping Ppy: H— M, y — x, is
an orthogonal projection, i.e., Py = Py and Ran(Py) L Ran(l — Py). It
satisfies the following properties:

@ Py is linear;

o ||Pull =1 if M #{0};

o | — Py =Py,

o |ly — Puyll < |ly — z|| for all z € M;

oyeM = Puy=y, (I-Pu)y=0

yeEME= Pyy=0, (I-Pyly=y,
o |lyl?> = IPmyll® + (I = Pm)yl||? (Pythagoras).

Proof. Omitted; see for example [Rudin, Real and Complex Analysis, pp.
34-35]. O




Example

Let H; and H, be real Hilbert spaces and let A: H; — H, be a continuous
linear operator.

The kernel (or null space) of operator A is defined as
Ker(A) := {x € H; | Ax =0}.
The range (or image) of operator A is defined as
Ran(A) :={y € Hy | y = Ax, x € Hi}.

Then we have the following:
o Ker(A) is a closed subspace of Hi, and Ran(A) is a subspace of Hj.
o H; = Ker(A) @ (Ker(A))*.

e H, = Ran(A) @ (Ran(A))*.




Proposition (Riesz representation theorem)

Let H be a real Hilbert space. If A: H— R is a bounded linear functional,
i.e., A is linear and there exists C > 0 such that

|A(x)| < C||x|| for all x € H,
then there exists a unique y € H such that

A(x) = (x,y) forall x € H.

Proof. If A= 0, then y = 0 and this is unique. Suppose A # 0 and let
M :=Ker(A) = {x € H| A(x) = 0}.

Since A is continuous, M is a closed subspace of H. Furthermore, by the
orthogonal decomposition H = M @ M=, our assumption A # 0 implies
that M # H = M+ #£ {0}.



Let x € H and z € M+ with ||z|| = 1. Define
u = A(x)z — A(z)x.

Then
A(u) = A(x)A(z) — A(z)A(x) = 0.
meaning that v € M. In particular (u, z) = (A(x)z — A(z)x,z) = 0 and
Alx) = Alx) (z,2) = (A(X)z,2)

~——
=[lz|]?=1

= (A(2)x,z) = A(z)(x, z) = (x, ZA(2)).

.. The element y = zA(z) satisfies A(x) = (x, y).
To prove uniqueness, suppose that there exist y1, y» € H such that

A(x) = (x,y1) = (X, y2).
Then (x,y1 — y2) =0 for all x € H. Choose x = y; — y». Then

O=m—yo1i—y)=In-»l & n=yw



Adjoint operator

Proposition

Let Hi and H» be real Hilbert spaces and suppose that A: Hi — H- is a bounded linear
operator. Then there exists a unique bounded linear operator A*: H, — Hy, called the
adjoint of A, satisfying (Ax,y)H, = (X, A*y)H,. = [|A"||Hy—H; -

Proof. Let y € H, and consider T,,: Hi — R, x — (Ax, y)n,. Clearly, T, is linear and
bounded so by the Riesz representation theorem there exists a unique z € H; s.t.

(Ax, ¥ )m, = Ty(x) = (x,z)n, for all x € H1.
Define A*y = z.
@ Let a,b€ R and y1,y» € H>. Linearity follows from
(x, A"(ay1 + by2)) = (Ax, ay1 + bys) = a(Ax, y1) + b(Ax, y2) =
a(x, A"y1) + b(x, A*y») = (x,aA"y1 + bA*y»). Since x € H; was arbitrary,
A*(ay1 + by:) = aA"y1 + bA™y,.

* * (*) *
O A"ty = SUP||y|p, <1 A"yl = SUP| |yl 4, <1 SUP|Ix|1, <1 [(A"y, x)|

()
= SUP||y||, <1 SUP| x|y, <1 Iy, Ax)| = SUP| x|, <1 |Ax|H, = [|Ally—H, < o0 O

()Let A € L(H, K), H, K Hilbert spaces. Cauchy-Schwarz: sup|jy <1 [{AX V) k| < [[AX]Ik.
Other direction: sup, |, <1 [{AX, y) k| > [(Ax, H/\XHKAXHK = ||Ax||k-
“IAXII Kk = supyy <1 A%, y) k-



Some properties of the adjoint operator

Proposition

Let H, and H, be real Hilbert spaces and suppose that A, B: Hi — H» are bounded
linear operators. Then

(i) [1A* Al -ty = AN -y
(i) A* = A, where A™* = (A*)*;
(III) (ClA + CzB)* = A" + CzB*, Cc1,C € R.

Proof. (i) Let x € Hi, ||x||n, = 1. By the Cauchy—Schwarz inequality,
||AX||%/2 = (Ax, A)m, = (X, A"Ax)m < [|A"Ax|lw, = HA”%‘ﬁ*}HQ < A Al —py -

Other direction: ||A*A|| < ||A*|| - ||All = || Al (previous slide and exercise of week 1).
(ii) If x € H1 and y € Ha, then

(ATX, ¥ = (A Y m = (AT, X = (v, Ay = (AX, Y )by

Hence (A" x — Ax,y)n, =0 for all y € H, = A" x = Ax for all x € Hy = A™ = A.
(iii) Let x € Hy and y € Ha. Then

(aA+aB)y,x)m = (v, (aA+ aB)x)H, = aly, Ax)H, + ey, Bx)n,
= (A", X)u + (B y, x)m = (A" + 2B")y, x) ;.

Similarly to the previous part, we conclude that (1A + B)* = ciA* + e B™.



Self-adjoint operators

Definition
Let H be a Hilbert space. A bounded, linear operator A: H — H is called self-adjoint if
A*=A, ie,

(Ax,y) = (x,Ay) forall x,y € H.

Example

Let H be a Hilbert space and let A, B: H — H be bounded, linear, self-adjoint
operators. Then

(i) A+ B is self-adjoint.
(ii) if ¢ € R, then cA is self-adjoint.
(iii) if AB = BA, then AB is self-adjoint.

Parts (i) and (ii) follow immediately from part (iii) on the previous slide. If x,y € H,
then
(ABx,y) = (BAx,y) = (Ax,By) = (x, ABy) = (AB)" = AB.

Example

Let H be a real Hilbert space and M C H a closed subspace. Then the orthogonal
projections Py: H— M and | — Py =: Py.: H— M~ are self-adjoint.




Compact operators

Definition
Let H; and H be real Hilbert spaces. A bounded linear operator K: Hy — H: is
compact if the sets K(U) C H. are compact for every bounded set U C H;.

The following characterization will be useful.

Characterization

Let Hy and H, be real Hilbert spaces. A bounded linear operator K: Hi — H- is
compact if and only if (Kx;)72; C Ha contains a convergent subsequence for every

bounded sequence (x;)2; C Hi.

Let H, Hi, and H: be Hilbert spaces. We have the following properties:
@ All linear maps to finite-dimensional spaces are compact.
@ If A B: Hi — H, are compact, then A+ B is compact.
@ If K: Hi — Ha is compact, then
e AK is compact for all bounded and linear A: H, — H.
e KB is compact for all bounded and linear B: H — H;.
@ If K,: Hi — H> are compact operators and K: H; — H- is a bounded, linear
n—o000

operator such that ||K, — K|| —— 0, then K is compact.
@ If K: Hi — H, is compact, then so is K*: H, — Hs.



Proposition
Let Hy and H, be real Hilbert spaces and A: Hy — H> a continuous linear
operator. Then

H; = Ker(A) @ (Ker(A))* = Ker(A) @ Ran(A*),

H, = Ran(A) @ (Ran(A))* = Ran(A) @ Ker(A*).

Proof. H; = Ker(A) @ (Ker(A))* and
H, = Ran(A) @ (Ran(A))* = Ran(A) @ (Ran(A))* follow immediately
from the previous discussion.! The claim

(Ran(A))* = Ker(A*) (4)

follows immediately by observing that x € Ker(A*) iff
0= (A"x,y) = (x,Ay) forall y € Hy.

The claim (Ker(A))* = Ran(A*) follows by applying (4) with A replaced

by A*. O

tHere we use the fact that Xt =x+t for any subspace X of H; see exercise 1.



Appendix: some auxiliary results



Let X and Y be normed spaces. We denote
L(X,Y):={A]| A: X — Y is bounded and linear}.

Proposition
IfY is complete, then L(X,Y') is complete w.r.t. operator norm (i.e., it is
a Banach space).

Proof. Let x € X and assume that Ay € L(X,Y), k € N, is a Cauchy
sequence. Then for all ¢ > 0, there exists N € N such that
€

Ix[1x

mn>N = ||An— A <
Especially,
|Amx — Anx|ly < ||Am — Anlll|x|lx <& when m,n> N,
so (Axx) is a Cauchy sequence in Y and therefore the limit
A(x) = kl|_)ngo Akx

exists.



It is easy to see that A(x) := limx_o0 Axx is linear. It is also bounded:
there exists N € N such that

mn>N = ||A,— A <1
Fix m > N. Then for all n > m,
[Anll <14 [|Am]|

and thus

[Anx|ly < (14 [|Am[)lIx]lx-
But ||Ax||y = limpseo |Anx|ly < (14 ||Aml])||x||x. Therefore A is
bounded.
Finally, we need to show that ||A, — A|| — 0 as n — co. Since we assumed
(Ak)72; to be Cauchy, let € > 0 be s.t. for m,n > N, there holds
|Am — An|| < e. Then

(A= A)x]ly = lim [Amx — Anx|ly <elx|x for all x € X
m—00

= |JJA-A<e.

O

Hence ||[A — Ap|| — 0 as n — oc.



If X = H; and Y = H are Hilbert spaces, then L£(Hi, H,) is a complete
normed space.

In general, £(H1, Hz) is not a Hilbert space even when both H; and H,
are. However, in the special case £(H,R) it turns out that indeed one can
associate an inner product that induces the operator norm || - || — meaning
that £(H,R) is a Hilbert space! This is a consequence of the Riesz
representation theorem (details omitted).



Basic properties of vector-valued series
Definition

Let E be a normed space and (xx) C E. Define the n'" partial sum S, := 3_7_; xk. If there
exists an element S € E such that lim, o0 ||S — Sp| = 0, then we say that the series >~ x
is convergent (in E) and denote

Moreover, we say that the series 22, X is absolutely convergent if 3 72, x| < oo.

Proposition

The normed space E is a Banach space iff every absolutely convergent series % o2 Xy is
convergent in E.

Theorem (Generalized Pythagorean theorem)

Let (ex) be an orthonormal sequence in Hilbert space H and let (A\x) C R. Then

oo oo
Z Akex is convergent iff Z [Ae]? < 0.
k=1 k=1

In this case, we have

o
Z )\kek
k=1

2 [o'e]
=D Inf
=1




Neumann series: “Sufficiently small perturbations of the
identity are still invertible”

The following result is a well-known generalization of the geometric series
formula, named after 19" century mathematician Carl Neumann.

Theorem (Neumann series)

Let H be a real Hilbert space and let A € L(H) := L(H, H) be such that
IA|| < 1. Then I — A is invertible in L(H) with

(I—A)_lzl—{—A_|__|_A”_{_:ZAk7
k=0

and this series converges in operator norm.

Proof. Let B, n:= > 7_, A, m < n. Since ||A| < 1, we have

¢ k mm_n k m]' B HAHn—m+1 m,n—o0
1Bmall < > NAIF=IAI™ > IAl* = ||Al L= [A] 0.
k=m k=0

. The partial sums >_7_, A form a Cauchy sequence in L(H).




Since H is a Hilbert space, £(H) is a Banach space and the limit

— k
B:= anZA € L(H)
k=0
exists. We need to prove that (/ — A)B =1= B(l — A). Let
B, =14+A4+---+ A"
Then
(I — A)B, =1— A"
B,(l —A) =1 — A"
and since ||A| < 1, [|A™HL]| < || A||"T! 2225 0, we thus obtain

| — AT T2 ) in L(H)

and

(1= A)B = lim (I = A)B, = = lim By(I — A) = B(I - A).

n—oo

O



Theorem (Bessel's inequality)

Let H be a real Hilbert space and let (e,) be an orthonormal sequence in
H. Then

e}

Z\ (x,en)|? < ||Ix||? for all x € H.
n=1

Especially lim,_o0(x, €y) = 0.

Proof. Let k € N. Noting that

(e 3ot elen s ) = (.0 ~ D (s on @) = (9} — (. 0) =0

n=1 n=1

for all j € {1,...,k}, we deduce that x — > (x,e,)en L 32K (x, en)en (recall that
the orthogonal complement is a subspace). By the Pythagorean theorem,

K K K
Z(X, en)e Z X, €n)e Z X, €n)
n=1 =1

n=1
Letting k — oo yields the assertion. O

k

X — Z(x, en)e

n=1

2
2
IxII" = >




Lax—Milgram lemma

Proposition (Lax-Milgram lemma)

Let H be a real Hilbert space and let B: H x H — R be a bilinear
mapping! with C,c > 0 such that

|B(u,v)| < Cllu|| - |lv|| forall u,v € H, (boundedness)
B(u,u) > c|lu||® foralluc H. (coercivity)

Let F: H— R be a bounded linear mapping. Then there exists a unique
element u € H satisfying

B(u,v) = F(v) forallveH.

and 1
< Z||F|.
Jull < CH |

'B(u+ v,w) = B(u,w) + B(v,w), B(au,v) = aB(u, v),
B(u,v+ w) = B(u,v) + B(u,w), B(u,av) = aB(u, v)
for all u,v,w € H and a € R.




Proof. 1) Let v € H be fixed. Then the mapping
T:ww— B(v,w), H—R,

is bounded and linear. It follows from the Riesz representation theorem
that there exists a unique element a € H with

Tw = (a,w) forall we H.
Let us define the mapping A: H — H by setting
Av = a.

Then
B(v,w) = (Av,w) forall v,w € H.



2) We show that the mapping A: H — H is linear and bounded. Clearly,

<A(C1V1 + C2V2), W) = B(C1v1 + Gy, W)
= ClB(Vl, W) + CQB(VQ, W)
= <C1AV1 + 0 Avs, W>

for all w € H, so A(civi + cav2) = c1Avi + c2Ava. Moreover,

1AV|[* = (Av, Av)
= B(v,Av)
< ClvllAv]

which implies that
[Av] < Cllv]l.



3) We show that
A is one-to-one,
{Ran(A) = AH is closed in H.
We begin by noting that

cllvl]® < B(v,v) = (Av,v) < [|Av|[|lv]
and thus
|Av|| > c|lv|]| forall v € H. (5)

Especially

Av=Aw = Alv—-w)=0=0=||A(v—w)|| >c|lv-w|]|>0=>v=w
so A is one-to-one.
To see that Ran(A) is closed, let y; = Ax; € Ran(A). The goal is to show that
y :=limj_ y; € Ran(A). We observe that

(5) 1
. o 2 im Ly — _
im g =l < fim =y =yl =0,
i.e., (x7)721 is Cauchy and x :=lim; o x; € H exists by completeness. Moreover,
lim [|Ax; — Ax|| < lim [|A[[[[x; — x|[ < C lim []x; — x|| =0
j—oo j—oo j—oo

and therefore
y = lim Ax; = Ax € Ran(A).
J—0o0



4) We show that Ran(A) = H. We prove this by contradiction: suppose
that Ran(A) = Ran(A) # H. Then there exists w € Ran(A)*, w # 0.1
This implies that

1 1

i.e., w = 0. This contradiction shows that Ran(A) = H. Therefore

A: H — H is a continuous bijection.

5) Existence of a solution. We use the Riesz representation theorem: since
F: H — R is linear and continuous, there exists b € H such that

F(v) = (b,v) forallveH.
Define u:= A~1b. Hence

Au=b <& (Au,v)=(b,v) forallveH
< B(u,v)=F(v) forallveH.

tSince (Ran(A)*)* = Ran(A) # H = (Ran(A))* # {0}.



6) Uniqueness. Suppose that
B(ui,w) = F(w) forall we H,
B(up,w) = F(w) for all w € H.
Let v := u; — up. By linearity,
B(u,w) =0 forall we H.

The coercivity of B implies that

—_

lull* < =B(u,u) =0

c
so that u =0, i.e.,, u1 = w.

7) A priori bound. If B(u,w) = F(w) for all w € H, then by setting
w = u we obtain

1 1 1
2<°B = ~F(u) < =|IF
lul® < —B(u, u) = —F(u) < —[|Fl}]u]

which immediately yields
1
< —||IF]|.
lull < —IIF]



Density argument

Lemma
Let X, Y be Banach spaces and let Z C X be a dense subspace. If
T:Z — Y is a linear mapping such that

ITxlly < Clixllx, xez, (6)
then there exists a unique extension T: X — Y with T|z = T and

ITx[ly < ClIxllx, x € X. (7)

Moreover, if (6) holds with equality, then so does (7).

Proof. Let x € X. Because Z C X is dense, there exists a sequence (zx)z2; C Z

k— o0

s.t. ||z« — x||lx —— 0. Let € > 0. Since (zx)z2; is a Cauchy sequence, there exists

N € N s.t.
£

mn>N = Hz,,,fz,,||x<c

Then there holds
| Tzm — Tzolly = (| T(2m — zn)|ly < Cllzm — za[[x <,

which means that (7Tz)72; is a Cauchy sequence in Y. Since Y is complete, there
exists y := limx_,00 Tzx. Hence we may define T: X — Y by setting T(x) = y.



We begin by showing that T is well-defined. Let (zK)21, (Zk)721 be two sequences in Z
s.t. zk, Zk H—°°> x in X. Then

1 T2 = T2lly = I Tz — Zlly < Cllze — Zll < Cllze — x| + ClIZ — x| *25°
Recalling that 7~'(x) = limx_ 00 T2k, we obtain
T2 — TN < T2 = Tzl + || Tz — T(x)]| =0,

showing that T is well-defined.
Next we show that T is linear. Let x,Xx € X and a,b € R. Let Z > z £220, x and
7357 “2= % Now ax + bx € X and Z 3 az + bZ — ax + bx. Thus

T(ax+ bX) = lim T(azx + bz) = a lim Tzx+b lim Tz =aTx+ bTx,
k— o0 k— o0 k— o0
since the limit is linear.

Since the norm is continuous,

||TXH = I|m Txk|| = I|m | Tx|| < C I|m x| = C|Ix]|-

Finally, T|z = T holds by cgonstructlon and the unlqueness of the limit Tzx — y ensures
that there cannot exist another mapping L: X — Y s.t. L|z = T and || Lx|| < C||x|. O

tLet y i=limg oo Tzx and y 1= limy00 T 2.
Then || T(azk + bz) — ay — by|| < a|| Tz« — y|| + b|| T2 — y|| — 0.
Hence limx— oo T(azk + bzi) = alimioo T2k + blimioo TZk.



