# Inverse Problems 

## Sommersemester 2023

Vesa Kaarnioja<br>vesa.kaarnioja@fu-berlin.de

FU Berlin, FB Mathematik und Informatik
First lecture, April 17, 2023
(Updated: April 24, 2023)

## Practical matters

- Lectures on Mondays at 10:15-12:00 in A6/025/026 by Vesa Kaarnioja.
- Exercises on Tuesdays at 10:15-12:00 in A6/007/008 by Vesa Kaarnioja starting next week.
- Weekly exercises published after each lecture. Please return your written solutions to Vesa either by email (vesa.kaarnioja@fu-berlin.de) or at the beginning of the exercise session in the following week.
- The conditions for completing this course are successfully completing and submitting at least $60 \%$ of the course's exercises and successfully passing the course exam.


## Course contents

- The first part of the course will cover classical variational regularization methods. We will follow Chapters 1-4 in
- J. Kaipio and E. Somersalo (2005). Statistical and Computational Inverse Problems. Springer, New York, NY.
- Second part of the course will cover Bayesian inverse problems. We will follow the texts
- D. Sanz-Alonso, A. M. Stuart, and A. Taeb (2018). Inverse Problems and Data Assimilation. https://arxiv.org/abs/1810.06191
- J. Kaipio and E. Somersalo (2005). Statistical and Computational Inverse Problems. Springer, New York, NY.
- D. Calvetti and E. Somersalo (2007). Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing. Springer, New York, NY.


## What is an inverse problem?

- Forward problem: Given known causes (initial conditions, material properties, other model parameters), determine the effects (data, measurements).
- Inverse problem: Observing the effects (noisy data), recover the cause.


Figure: Computerized tomography (CT)


Figure: Image deblurring (deconvolution)

$$
y=(K * f)(x)=\int_{\mathbb{R}^{2}} K\left(x-x^{\prime}\right) f\left(x^{\prime}\right) \mathrm{d} x^{\prime}
$$

## Introduction: What is an inverse problem?

We consider the indirect measurement of an unknown physical quantity $x \in X$. The measurement $y \in Y$ is related to the unknown by a physical or mathematical model

$$
\begin{equation*}
y=F(x) \tag{1}
\end{equation*}
$$

where $F: X \rightarrow Y$ is called the forward mapping.

- Computing $y$ for a given $x$ is called the forward problem.
- Finding $x$ for a given measurement $y$ (the data) is called the inverse problem.

The inverse problem is often ill-posed, making it more difficult than the corresponding direct problem.

A problem is called well-posed (in the sense of Hadamard), if
(a) a solution exists,
(b) the solution is unique, and
(c) the solution depends continuously on the data.

If one or more of these conditions are violated, the problem is called ill-posed.

Some examples of ill-posed inverse problems are X-ray tomography, image deblurring, the inverse heat equation, and electrical impedance tomography (EIT).

The ill-posedness of an inverse problem poses a challenge because usually, errors are present in the measurements. Incorporating these into model (1) in the form of additive noise $\eta$ leads to a more realistic model

$$
y=F(x)+\eta
$$

The violation of the above conditions leads to various difficulties.

- If condition (a) is violated, i.e., if the image $\operatorname{Ran}(F)$ of $F$ does not cover the whole space $Y$, then there may not exist a solution to $F(x)=y$ for noisy data $y=F\left(x^{\dagger}\right)+\eta$ created by a ground truth $x^{\dagger}$, although a solution exists for noise free data $y=F\left(x^{\dagger}\right)$, since $\eta$ does not need to lie in $\operatorname{Ran}(F)$.
- If condition (c) is violated, then the solution to $F(x)=y$ for noisy data $y=F\left(x^{\dagger}\right)+\eta$ may be far away from the solution for noise free data $y=F\left(x^{\dagger}\right)$, even if $F$ is invertible and the noise $\eta$ is small, due to the discontinuity of $F^{-1}$.


## Example.

The deblurring (or deconvolution) problem of recovering an input signal $x$ from an observed signal $y$ (possibly contaminated by noise) occurs in many imaging as well as image and signal processing applications. The mathematical model is

$$
y(t)=\underbrace{\int_{-\infty}^{\infty} a(t-s) x(s) \mathrm{d} s}_{=:(a * x)(t)}
$$

where the function $a$ is known as the blurring kernel.
If $\hat{a}$ is "nice", we can use the Fourier transform together with the convolution theorem to solve the problem analytically:

$$
\begin{aligned}
& y(t)=\left(a * x_{\text {exact }}\right)(t) \quad \Leftrightarrow \quad \widehat{y}(\xi)=\widehat{a}(\xi) \widehat{x}_{\text {exact }}(\xi) \quad \Leftrightarrow \quad \widehat{x}_{\text {exact }}(\xi)=\frac{\widehat{y}(\xi)}{\widehat{a}(\xi)} \\
& \Leftrightarrow \quad x_{\text {exact }}(t)=\mathcal{F}^{-1}\left\{\frac{\widehat{y}}{\widehat{a}}\right\}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{e}^{i t \xi} \frac{\widehat{y}(\xi)}{\widehat{a}(\xi)} \mathrm{d} \xi .
\end{aligned}
$$

Here, $x_{\text {exact }}$ denotes the solution to this problem with exact, noiseless data.

However, if we can only observe noisy measurements, we must consider

$$
y(t)=(a * x)(t)+\eta(t) \quad \Leftrightarrow \quad \widehat{y}(\xi)=\widehat{a}(\xi) \widehat{x}(\xi)+\widehat{\eta}(\xi)
$$

The solution formula from the previous slide gives (in the Fourier side)

$$
\widehat{x}(\xi)=\frac{\widehat{y}(\xi)}{\widehat{a}(\xi)}=\widehat{x}_{\text {exact }}(\xi)+\frac{\widehat{\eta}(\xi)}{\widehat{a}(\xi)}
$$

then we apply the inverse Fourier transform on both sides. However, this reconstruction might not be well-defined and it is typically not stable, i.e., it does not depend continuously on the data $y$. The kernel a usually decreases exponentially (or has compact support). A typical example is a Gaussian kernel

$$
a(t)=\frac{1}{2 \pi \alpha^{2}} \exp \left(-\frac{t^{2}}{2 \alpha^{2}}\right)
$$

for some $\alpha>0$.

By the Plancherel theorem, $\widehat{a} \in L^{2}(\mathbb{R})$ and

$$
\int_{-\infty}^{\infty}|a(t)|^{2} \mathrm{~d} t=\int_{-\infty}^{\infty}|\hat{a}(\xi)|^{2} \mathrm{~d} \xi
$$

if $a \in L^{2}(\mathbb{R})$. This implies in particular that $\widehat{a}(\xi) \rightarrow 0$ as $|\xi| \rightarrow \infty$. As a consequence, high frequencies $\widehat{\eta}(\xi)$ of the noise get amplified arbitrarily strong in $\widehat{x}$. Thus, even the presence of small noise can lead to large changes in the reconstruction.

Case study: parallel-beam X-ray tomography

Case study: parallel-beam X-ray tomography


Case study: parallel-beam X-ray tomography


## Case study: parallel-beam X-ray tomography



## Case study: parallel-beam X-ray tomography



Case study: parallel-beam X-ray tomography


Let us consider the following phantom (botton left), which we use to simulate measurements taken from 60 angles contaminated with $5 \%$ Gaussian noise (sinogram on the bottom right). Inverse problem: use the sinogram data (X-ray images taken from the different directions) to reconstruct the internal structure of the physical body (i.e., the phantom).


Technical (but important) note: to avoid the so-called inverse crime, the measurements for the inversion on the following page were generated using a higher resolution phantom.

Formation of a CT sinogram (Samuli Siltanen):
https://www. youtube.com/watch?v=q7Rt_OY_7tU

Reconstructions arg $\min \left\{\|A x-m\|^{2}+\mathcal{R}(x)\right\}$ from noisy measurements $m$ $x$ with some selected penalty terms $\mathcal{R}$ are given immediately below.


Left: reconstruction with total variation regularization. Right: same with Tikhonov regularization.
Some other reconstructions for comparison (and the target phantom).


Left: filtered back projection. Middle: unfiltered back projection. Right: ground truth.

## Electrical impedance tomography

Use measurements of current and voltage collected at electrodes covering part of the boundary to infer the interior conductivity of an object/body.

$$
\begin{cases}\nabla \cdot(\sigma \nabla u)=0 & \text { in } D \\ \sigma \frac{\partial u}{\partial \boldsymbol{n}}=0 & \text { on } \partial D \backslash \bigcup_{k=1}^{L} \overline{E_{k}}, \\ u+z_{k} \sigma \frac{\partial u}{\partial \boldsymbol{n}}=U_{k} & \text { on } E_{k}, k \in\{1, \ldots, L\} \\ \int_{E_{k}} \sigma \frac{\partial u}{\partial \boldsymbol{n}} \mathrm{~d} S=I_{k}, & k \in\{1, \ldots, L\},\end{cases}
$$




- Successful solution of inverse problems requires specially designed algorithms that can tolerate errors in measured data.
- How to incorporate all possible prior and expert knowledge about the possible solutions when solving inverse problems?
- The statistical approach to inverse problems aims to quantify how uncertainty in the data or model affects the solutions obtained in problems.


## Preliminary functional analysis

## Inner product space

A real vector space $X$ is an inner product space if there exists a mapping $\langle\cdot, \cdot\rangle: X \times X \rightarrow \mathbb{R}$ satisfying

- $\left\langle a x_{1}+b x_{2}, y\right\rangle=a\left\langle x_{1}, y\right\rangle+b\left\langle x_{2}, y\right\rangle$ for all $x_{1}, x_{2}, y \in X$ and $a, b \in \mathbb{R}$;
- $\langle x, y\rangle=\langle y, x\rangle$ for all $x, y \in X$;
- $\langle x, x\rangle \geq 0$ for all $x \in X$, where equality holds iff $x=0$.

A mapping $\langle\cdot, \cdot\rangle$ satisfying these conditions is called an inner product.

## Example

i) $\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{k} \in \mathbb{R}\right\}$. Then the inner product is the Euclidean dot product

$$
\langle x, y\rangle=\sum_{k=1}^{n} x_{k} y_{k}, \quad x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)
$$

ii) Let $X=C([a, b])=\{f \mid f:[a, b] \rightarrow \mathbb{R}$ is continuous $\}$ and define

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) \mathrm{d} x
$$

Then this is an inner product on $C([a, b])$.
iii) Let $X=\ell^{2}(\mathbb{R})=\left\{\left.\left(z_{k}\right)_{k=1}^{\infty}\left|\sum_{k=1}^{\infty}\right| z_{k}\right|^{2}<\infty\right\}$. Then $\ell^{2}(\mathbb{R})$ is an inner product space when

$$
\langle x, y\rangle=\sum_{k=1}^{\infty} x_{k} y_{k}, \quad x=\left(x_{1}, x_{2}, \ldots\right), y=\left(y_{1}, y_{2}, \ldots\right)
$$

## Definition

A real vector space $X$ is a normed space if there exists a mapping $\|\cdot\|: X \rightarrow \mathbb{R}$ satisfying

- $\|a x\|=|a|\|x\|$ for all $a \in \mathbb{R}$ and $x \in X$;
- $\|x\| \geq 0$ for all $x \in X$, where equality holds iff $x=0$.
- $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in X$ (triangle inequality).

If $X$ is an inner product space, then it is a normed space in a canonical way with the induced norm $\|\cdot\|: X \rightarrow \mathbb{R}$ defined by

$$
\|x\|=\sqrt{\langle x, x\rangle}, \quad x \in X
$$

The first two postulates follow immediately from the properties of inner product spaces, the triangle inequality follows from the Cauchy-Schwarz inequality.

Proposition (Cauchy-Schwarz inequality) If $(X,\langle\cdot, \cdot\rangle)$ is an inner product space, then

$$
|\langle x, y\rangle| \leq\|x\|\|y\| \quad \text { for all } x, y \in X .
$$

Proof. Let $x, y \in X$ and $t \in \mathbb{R}$. If $x=0$ or $y=0$, then the claim is trivial. Suppose that $x \neq 0 \neq y$. Then

$$
0 \leq\langle x+t y, x+t y\rangle=\|x\|^{2}+2 t\langle x, y\rangle+t^{2}\|y\|^{2} .
$$

This is a second degree polynomial w.r.t. $t$ with at most 1 real root. Hence,

$$
\begin{aligned}
\text { discriminant } \leq 0 & \Leftrightarrow 4|\langle x, y\rangle|^{2}-4\|x\|^{2}\|y\|^{2} \leq 0 \\
& \Leftrightarrow|\langle x, y\rangle|^{2} \leq\|x\|^{2}\|y\|^{2}
\end{aligned}
$$

Note that if $y=a x, a \in \mathbb{R}$, then discriminant $=0$ and Cauchy-Schwarz holds with equality.

The triangle inequality is an immediate consequence of Cauchy-Schwarz:

$$
\begin{aligned}
\|x+y\|^{2} & =\langle x+y, x+y\rangle=\|x\|^{2}+\|y\|^{2}+2\langle x, y\rangle \\
& \leq\|x\|^{2}+\|y\|^{2}+2|\langle x, y\rangle| \leq\|x\|^{2}+\|y\|^{2}+2\|x\|\|y\| \\
& =(\|x\|+\|y\|)^{2} \quad \text { for all } x, y \in X .
\end{aligned}
$$

For our purposes, having an inner product is not enough. We need to know that these spaces are also complete normed spaces.
Definition (Cauchy sequence)
A sequence $\left(x_{k}\right)_{k=1}^{\infty}$ of elements of $(X,\|\cdot\|)$ is called a Cauchy sequence if for all $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
m, n>N \quad \Rightarrow \quad\left\|x_{m}-x_{n}\right\|<\varepsilon
$$

Definition (Complete space)
A normed space $(X,\|\cdot\|)$ is complete if all Cauchy sequences in $X$ converge to an element of $X$.

Definition (Banach space)
A normed space $(X,\|\cdot\|)$ which is complete with respect to $\|\cdot\|$ is a Banach space.

Definition (Hilbert space)
An inner product space $(H,\langle\cdot, \cdot\rangle)$ which is complete with respect to $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$ defined by the inner product is a Hilbert space.

Example
i) $\mathbb{R}^{n}$ and $\ell^{2}(\mathbb{R})$ are complete.
ii) $C([a, b])$ is not complete w.r.t. the norm

$$
\|f\|^{2}=\int_{a}^{b}|f(x)|^{2} \mathrm{~d} x
$$

Let $a=-1, b=1$, and define

$$
f_{n}(x):= \begin{cases}0, & -1 \leq x<0 \\ n x, & 0 \leq x \leq \frac{1}{n} \\ 1, & \frac{1}{n}<x \leq 1\end{cases}
$$

Then $f_{n}$ is continuous, and if $H(x)=\chi_{[0,1]}(x)=\left\{\begin{array}{ll}0, & -1 \leq x \leq 0, \\ 1, & 0<x \leq 1,\end{array}\right.$ we have

$$
\begin{aligned}
& \int_{-1}^{1}\left|f_{n}(x)-H(x)\right|^{2} \mathrm{~d} x=\int_{0}^{1 / n}|n x-1|^{2} \mathrm{~d} x=\int_{0}^{1 / n}\left(n^{2} x^{2}-2 n x+1\right) \mathrm{d} x \\
& =\left[\frac{n^{2} x^{3}}{3}-n x^{2}+x\right]_{x=0}^{x=1 / n}=\frac{1}{3 n}-\frac{1}{n}+\frac{1}{n}=\frac{1}{3 n} \xrightarrow{n \rightarrow \infty} 0
\end{aligned}
$$

We have $\left\|f_{n}-H\right\| \rightarrow 0$, but $H \notin C([-1,1])$.
However, note that $C([a, b])$ is complete w.r.t. the sup-norm $\|f\|_{\infty}=\sup _{a \leq x \leq b}|f(x)|$, but $\|\cdot\|_{\infty} \neq\|\cdot\|$ and there is no inner product inducing $\|\cdot\|_{\infty}$-norm.

## Bounded linear operators in Hilbert spaces

## Definition

Let $X$ and $Y$ be normed spaces with norms $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$. A linear operator $A: X \rightarrow Y$ is said to be bounded if there exists $C>0$ such that

$$
\|A x\|_{Y} \leq C\|x\|_{X} \quad \text { for all } x \in X
$$

## Lemma

Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed spaces. Then a linear operator $A: X \rightarrow Y$ is bounded iff

$$
\|A\|:=\|A\|_{X \rightarrow Y}:=\sup _{\|x\|_{X} \leq 1}\|A x\|_{Y}<\infty
$$

Proof. " $\Rightarrow$ " If there is $C>0$ s.t. $\|A x\|_{Y} \leq C\|x\|_{X}$ for all $x \in X$, then clearly $\|A\|=\sup _{\|x\|_{X} \leq 1}\|A x\|_{Y} \leq C$.
" $\Leftarrow$ " Let $\|A\|<\infty$. Since $\left\|\frac{x}{\|x\|_{X}}\right\|_{x}=1$ for all $x \neq 0$, from the linearity of $A$ we infer

$$
\frac{\|A x\|_{Y}}{\|x\|_{X}}=\left\|A\left(\frac{x}{\|x\|_{X}}\right)\right\|_{Y} \leq\|A\| \quad \text { for all } x \in X
$$

This implies the important estimate

$$
\|A x\|_{Y} \leq\|A\|\|x\|_{X} \quad \text { for all } x \in X
$$

A linear operator is continuous precisely when it is bounded. Proposition
Let $(X,\|\cdot\| x)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed spaces and $A: X \rightarrow Y$ a linear operator. Then the following are equivalent:
(i) $A$ is a bounded operator;
(ii) $A$ is continuous (in $X$ );
(iii) $A$ is continuous at one point $x_{0} \in X$.

Proof. (i) $\Rightarrow$ (ii): if $x, y \in X$ and $\varepsilon>0$, then

$$
\|x-y\|_{x} \leq \frac{\varepsilon}{\|A\|}=: \delta \quad \Rightarrow \quad\|A x-A y\|_{Y} \stackrel{A}{\underline{\text { linear }}}\|A(x-y)\|_{Y} \leq\|A\|\|x-y\|_{x} \leq \varepsilon
$$

(ii) $\Rightarrow$ (iii): trivial.
(iii) $\Rightarrow$ (i): let $A$ be continuous at $x_{0} \in X$. By definition, there exists $\delta>0$ such that

$$
\left\|y-x_{0}\right\|_{x} \leq \delta \quad \Rightarrow \quad\left\|A y-A x_{0}\right\|_{Y} \leq 1
$$

If $x \in X$ is such that $\|x\| x \leq \delta$, then by taking $y=x+x_{0}$ :

$$
\|A x\|_{Y}=\left\|A\left(x+x_{0}\right)-A x_{0}\right\|_{Y} \leq 1
$$

On the other hand, for any $\|x\| x \leq 1$, there holds $\|\delta x\| x=\delta\|x\| x \leq \delta$ and thus

$$
\delta\|A x\|_{Y}=\|A(\delta x)\|_{Y} \leq 1, \quad \text { i.e., } \quad\|A x\|_{Y} \leq \frac{1}{\delta} \quad \text { for all }\|x\|_{X} \leq 1
$$

Therefore $\|A\| \leq \frac{1}{\delta}$, meaning that $A$ is bounded.

Let $H$ be a real Hilbert space.

## Definition

Two elements $x, y \in H$ are said to be orthogonal if $\langle x, y\rangle=0$.
Let $M \subset H$ be a subset. The orthogonal complement of $M$ in $H$ is defined as

$$
M^{\perp}:=\{y \in H \mid\langle x, y\rangle=0 \quad \text { for all } x \in M\} .
$$

We state the following easy consequences.

## Lemma

For any subset $M \subset H, M^{\perp}$ is a closed subspace of $H$ and $M \subset\left(M^{\perp}\right)^{\perp}$.

Lemma
If $M$ is a subspace of $H$, then $\left(M^{\perp}\right)^{\perp}=\bar{M}$. If $M$ is a closed subspace of $H$, then $\left(M^{\perp}\right)^{\perp}=M$.

## Proposition (Hilbert projection theorem)

Let $M$ be a nonempty, closed, and convex ${ }^{\dagger}$ subset of a real Hilbert space $H$. Then there exists a unique element $x_{0} \in M$ satisfying

$$
\left\|x_{0}\right\| \leq\|x\| \quad \text { for all } x \in M
$$

Proof. Let $\delta=\inf \{\|x\| \mid x \in M\}$. We use the parallelogram identity
$\|u+v\|^{2}+\|u-v\|^{2}=2\|u\|^{2}+2\|v\|^{2}$ applied to vectors $u=\frac{1}{2} x$ and $v=\frac{1}{2} y, x, y \in M$, to obtain

$$
\frac{1}{4}\|x-y\|^{2}=\frac{1}{2}\|x\|^{2}+\frac{1}{2}\|y\|^{2}-\left\|\frac{x+y}{2}\right\|^{2}
$$

Due to convexity $\frac{1}{2}(x+y) \in M$, so

$$
\begin{equation*}
\|x-y\|^{2} \leq 2\|x\|^{2}+2\|y\|^{2}-4 \delta^{2} \quad \text { for all } x, y \in M \tag{2}
\end{equation*}
$$

Existence: let $\left(x_{k}\right)_{k=1}^{\infty} \subset M$ s.t. $\left\|x_{k}\right\| \xrightarrow{k \rightarrow \infty} \delta$. Substituting $x \leftarrow x_{n}$ and $y \leftarrow x_{m}$ in (2) yields $\left\|x_{n}-x_{m}\right\|^{2} \leq 2\left\|x_{n}\right\|^{2}+2\left\|x_{m}\right\|^{2}-4 \delta^{2}$, since $\frac{1}{2}\left(x_{n}+x_{m}\right) \in M$ for all $n$, $m$. Thus $\left\|x_{n}-x_{m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. $\left(x_{k}\right)_{k=1}^{\infty}$ is Cauchy in the Hilbert space $H$, so there exists $x_{0}:=\lim _{k \rightarrow \infty} x_{k} \in H$. Since $\|\cdot\|$ is continuous, $\left\|x_{0}\right\|=\lim _{k \rightarrow \infty}\left\|x_{k}\right\|=\delta$. Since $M$ is closed and $\left(x_{k}\right)_{k=1}^{\infty} \subset M$, the limit $x_{0} \in M$.
Uniqueness: If $\|x\|=\|y\|=\delta \Rightarrow\|x-y\|^{2} \leq 0$ by (2) and so $x=y$.

$$
{ }^{\dagger} t x+(1-t) y \in M \text { for all } x, y \in M, t \in(0,1)
$$

## Corollary

Let $H$ be a real Hilbert space, $M$ a nonempty, closed, and convex subset of $H$, and $x \in H$. Then there exists a unique element $y_{0} \in M$ such that

$$
\left\|x-y_{0}\right\| \leq\|x-y\| \quad \text { for all } y \in M
$$

Proof. The set $x-M:=\{x-y \mid y \in M\}$ is closed and convex, and $\min \{\|x-y\| \mid x-y \in x-M\}=\min \{\|x-y\| \mid y \in M\}$. The claim follows from the previous result.

Proposition (Orthogonal decomposition)
If $M$ is a closed subspace of a real Hilbert space $H$, then

$$
H=M \oplus M^{\perp}
$$

which means that every element $y \in H$ can be uniquely represented as

$$
y=x+x^{\perp}, \quad x \in M, x^{\perp} \in M^{\perp} .
$$

Proof. It suffices to prove that $M \cap M^{\perp}=\{0\}$ and $M+M^{\perp}=H$.

- If $x \in M \cap M^{\perp}$, then $0=\langle x, x\rangle=\|x\|^{2}$ (i.e., $x \perp x$ ) so $x=0$.
$\therefore M \cap M^{\perp}=\{0\}$.
- Let $x \in H$. The Hilbert projection theorem guarantees that there exists a unique $y_{0} \in M$ such that

$$
\begin{equation*}
\left\|x-y_{0}\right\| \leq\|x-y\| \quad \text { for all } y \in M \tag{3}
\end{equation*}
$$

Let $x_{0}=x-y_{0}$ so that $x=y_{0}+x_{0} \in M+x_{0}$. It remains to show that $x_{0} \in M^{\perp}$.
The inequality (3) can be written as

$$
\left\|x_{0}\right\| \leq\|z\| \quad \text { for all } z \in x-M
$$

Since $y_{0} \in M$ and $M$ is a vector space, $y_{0}+M=M$ and $M=-M$ which implies $x-M=x+M=y_{0}+x_{0}+M=x_{0}+M$. The previous inequality can be recast as

$$
\left\|x_{0}\right\| \leq\|z\| \quad \text { for all } z \in x_{0}+M \quad \Leftrightarrow \quad\left\|x_{0}\right\| \leq\left\|x_{0}+z\right\| \quad \text { for all } z \in M \text {. }
$$

This statement is true if and only if $\left\langle x_{0}, z\right\rangle=0$ for all $z \in M$. Therefore $x_{0} \in M^{\perp}$.

Let $M$ be a closed subspace. The orthogonal decomposition implies that every element $y \in H$ can be uniquely represented as

$$
y=x+x^{\perp}, x \in M, x^{\perp} \in M^{\perp}
$$

## Lemma

Let $M \subset H$ be a closed subspace. The mapping $P_{M}: H \rightarrow M, y \mapsto x$, is an orthogonal projection, i.e., $P_{M}^{2}=P_{M}$ and $\operatorname{Ran}\left(P_{M}\right) \perp \operatorname{Ran}\left(I-P_{M}\right)$. It satisfies the following properties:

- $P_{M}$ is linear;
- $\left\|P_{M}\right\|=1$ if $M \neq\{0\}$;
- $I-P_{M}=P_{M^{\perp}}$;
- $\left\|y-P_{M y}\right\| \leq\|y-z\|$ for all $z \in M$;
- $y \in M \Rightarrow P_{M} y=y,\left(I-P_{M}\right) y=0$; $y \in M^{\perp} \Rightarrow P_{M} y=0,\left(I-P_{M}\right) y=y ;$
- $\|y\|^{2}=\left\|P_{M} y\right\|^{2}+\left\|\left(I-P_{M}\right) y\right\|^{2}$ (Pythagoras).

Proof. Omitted; see for example [Rudin, Real and Complex Analysis, pp. 34-35].

## Example

Let $H_{1}$ and $H_{2}$ be real Hilbert spaces and let $A: H_{1} \rightarrow H_{2}$ be a continuous linear operator.
The kernel (or null space) of operator $A$ is defined as

$$
\operatorname{Ker}(A):=\left\{x \in H_{1} \mid A x=0\right\}
$$

The range (or image) of operator $A$ is defined as

$$
\operatorname{Ran}(A):=\left\{y \in H_{2} \mid y=A x, x \in H_{1}\right\} .
$$

Then we have the following:

- $\operatorname{Ker}(A)$ is a closed subspace of $H_{1}$, and $\operatorname{Ran}(A)$ is a subspace of $H_{2}$.
- $H_{1}=\operatorname{Ker}(A) \oplus(\operatorname{Ker}(A))^{\perp}$.
- $H_{2}=\overline{\operatorname{Ran}(A)} \oplus(\operatorname{Ran}(A))^{\perp}$.


## Proposition (Riesz representation theorem)

Let $H$ be a real Hilbert space. If $A: H \rightarrow \mathbb{R}$ is a bounded linear functional, i.e., $A$ is linear and there exists $C>0$ such that

$$
|A(x)| \leq C\|x\| \quad \text { for all } x \in H
$$

then there exists a unique $y \in H$ such that

$$
A(x)=\langle x, y\rangle \quad \text { for all } x \in H .
$$

Proof. If $A \equiv 0$, then $y=0$ and this is unique. Suppose $A \neq 0$ and let

$$
M:=\operatorname{Ker}(A)=\{x \in H \mid A(x)=0\} .
$$

Since $A$ is continuous, $M$ is a closed subspace of $H$. Furthermore, by the orthogonal decomposition $H=M \oplus M^{\perp}$, our assumption $A \neq 0$ implies that $M \neq H \Rightarrow M^{\perp} \neq\{0\}$.

Let $x \in H$ and $z \in M^{\perp}$ with $\|z\|=1$. Define

$$
u:=A(x) z-A(z) x
$$

Then

$$
A(u)=A(x) A(z)-A(z) A(x)=0
$$

meaning that $u \in M$. In particular $\langle u, z\rangle=\langle A(x) z-A(z) x, z\rangle=0$ and

$$
\begin{aligned}
A(x) & =A(x) \underbrace{\langle z, z\rangle}_{=\|z\|^{2}=1}=\langle A(x) z, z\rangle \\
& =\langle A(z) x, z\rangle=A(z)\langle x, z\rangle=\langle x, z A(z)\rangle .
\end{aligned}
$$

$\therefore$ The element $y=z A(z)$ satisfies $A(x)=\langle x, y\rangle$.
To prove uniqueness, suppose that there exist $y_{1}, y_{2} \in H$ such that

$$
A(x)=\left\langle x, y_{1}\right\rangle=\left\langle x, y_{2}\right\rangle
$$

Then $\left\langle x, y_{1}-y_{2}\right\rangle=0$ for all $x \in H$. Choose $x=y_{1}-y_{2}$. Then

$$
0=\left\langle y_{1}-y_{2}, y_{1}-y_{2}\right\rangle=\left\|y_{1}-y_{2}\right\|^{2} \quad \Leftrightarrow \quad y_{1}=y_{2}
$$

## Adjoint operator

## Proposition

Let $H_{1}$ and $H_{2}$ be real Hilbert spaces and suppose that $A: H_{1} \rightarrow H_{2}$ is a bounded linear operator. Then there exists a unique bounded linear operator $A^{*}: H_{2} \rightarrow H_{1}$, called the adjoint of $A$, satisfying $\langle A x, y\rangle_{H_{2}}=\left\langle x, A^{*} y\right\rangle_{H_{1}}$. Moreover, $\|A\|_{H_{1} \rightarrow H_{2}}=\left\|A^{*}\right\|_{H_{2} \rightarrow H_{1}}$.

Proof. Let $y \in H_{2}$ and consider $T_{y}: H_{1} \rightarrow \mathbb{R}, x \mapsto\langle A x, y\rangle_{H_{2}}$. Clearly, $T_{y}$ is linear and bounded so by the Riesz representation theorem there exists a unique $z \in H_{1}$ s.t.

$$
\langle A x, y\rangle_{H_{2}}=T_{y}(x)=\langle x, z\rangle_{H_{1}} \quad \text { for all } x \in H_{1}
$$

Define $A^{*} y:=z$.

- Let $a, b \in \mathbb{R}$ and $y_{1}, y_{2} \in H_{2}$. Linearity follows from

$$
\begin{aligned}
& \left\langle x, A^{*}\left(a y_{1}+b y_{2}\right)\right\rangle=\left\langle A x, a y_{1}+b y_{2}\right\rangle=a\left\langle A x, y_{1}\right\rangle+b\left\langle A x, y_{2}\right\rangle= \\
& a\left\langle x, A^{*} y_{1}\right\rangle+b\left\langle x, A^{*} y_{2}\right\rangle=\left\langle x, a A^{*} y_{1}+b A^{*} y_{2}\right\rangle . \text { Since } x \in H_{1} \text { was arbitrary, } \\
& A^{*}\left(a y_{1}+b y_{2}\right)=a A^{*} y_{1}+b A^{*} y_{2} .
\end{aligned}
$$

- $\left\|A^{*}\right\|_{H_{2} \rightarrow H_{1}}=\sup _{\|y\|_{H_{2}} \leq 1}\left\|A^{*} y\right\|_{H_{1}} \stackrel{(*)}{=} \sup _{\|y\|_{H_{2}} \leq 1} \sup _{\|x\|_{H_{1}} \leq 1}\left|\left\langle A^{*} y, x\right\rangle\right|$

$$
=\sup _{\|y\|_{H_{2}} \leq 1} \sup _{\|x\|_{H_{1}} \leq 1}|\langle y, A x\rangle| \stackrel{(*)}{=} \sup _{\|x\|_{H_{1}} \leq 1}\|A x\|_{H_{2}}=\|A\|_{H_{1} \rightarrow H_{2}}<\infty .
$$

${ }^{(*)}$ Let $\Lambda \in \mathcal{L}(H, K), H, K$ Hilbert spaces. Cauchy-Schwarz: $\sup _{\|y\|_{K} \leq 1}\left|\langle\Lambda x, y\rangle_{K}\right| \leq\|\Lambda x\|_{K}$. Other direction: $\sup _{\|y\|_{K} \leq 1}\left|\langle\Lambda x, y\rangle_{K}\right| \geq\left|\left\langle\Lambda x, \frac{1}{\|\Lambda x\|_{K}} \Lambda x\right\rangle\right|_{K}=\|\Lambda x\|_{K}$. $\therefore\|\Lambda x\|_{K}=\sup _{\|y\|_{K} \leq 1}\left|\langle\Lambda x, y\rangle_{K}\right|$.

## Some properties of the adjoint operator

## Proposition

Let $H_{1}$ and $H_{2}$ be real Hilbert spaces and suppose that $A, B: H_{1} \rightarrow H_{2}$ are bounded linear operators. Then
(i) $\left\|A^{*} A\right\|_{H_{1} \rightarrow H_{1}}=\|A\|_{H_{1} \rightarrow H_{2}}^{2}$,
(ii) $A^{* *}=A$, where $A^{* *}=\left(A^{*}\right)^{*}$;
(iii) $\left(c_{1} A+c_{2} B\right)^{*}=c_{1} A^{*}+c_{2} B^{*}, c_{1}, c_{2} \in \mathbb{R}$.

Proof. (i) Let $x \in H_{1},\|x\|_{H_{1}}=1$. By the Cauchy-Schwarz inequality,

$$
\|A x\|_{H_{2}}^{2}=\langle A x, A x\rangle_{H_{2}}=\left\langle x, A^{*} A x\right\rangle_{H_{1}} \leq\left\|A^{*} A x\right\|_{H_{1}} \Rightarrow\|A\|_{H_{1} \rightarrow H_{2}}^{2} \leq\left\|A^{*} A\right\|_{H_{1} \rightarrow H_{1}}
$$

Other direction: $\left\|A^{*} A\right\| \leq\left\|A^{*}\right\| \cdot\|A\|=\|A\|^{2}$ (previous slide and exercise of week 1 ). (ii) If $x \in H_{1}$ and $y \in H_{2}$, then

$$
\left\langle A^{* *} x, y\right\rangle_{H_{2}}=\left\langle x, A^{*} y\right\rangle_{H_{1}}=\left\langle A^{*} y, x\right\rangle_{H_{1}}=\langle y, A x\rangle_{H_{2}}=\langle A x, y\rangle_{H_{2}} .
$$

Hence $\left\langle A^{* *} x-A x, y\right\rangle_{H_{2}}=0$ for all $y \in H_{2} \Rightarrow A^{* *} x=A x$ for all $x \in H_{1} \Rightarrow A^{* *}=A$. (iii) Let $x \in H_{1}$ and $y \in H_{2}$. Then

$$
\begin{aligned}
\left\langle\left(c_{1} A+c_{2} B\right)^{*} y, x\right\rangle_{H_{1}} & =\left\langle y,\left(c_{1} A+c_{2} B\right) x\right\rangle_{H_{2}}=c_{1}\langle y, A x\rangle_{H_{2}}+c_{2}\langle y, B x\rangle_{H_{2}} \\
& =c_{1}\left\langle A^{*} y, x\right\rangle_{H_{1}}+c_{2}\left\langle B^{*} y, x\right\rangle_{H_{1}}=\left\langle\left(c_{1} A^{*}+c_{2} B^{*}\right) y, x\right\rangle_{H_{1}} .
\end{aligned}
$$

Similarly to the previous part, we conclude that $\left(c_{1} A+c_{2} B\right)^{*}=c_{1} A^{*}+c_{2} B^{*}$.

## Self-adjoint operators

## Definition

Let $H$ be a Hilbert space. A bounded, linear operator $A: H \rightarrow H$ is called self-adjoint if $A^{*}=A$, i.e.,

$$
\langle A x, y\rangle=\langle x, A y\rangle \quad \text { for all } x, y \in H
$$

## Example

Let $H$ be a Hilbert space and let $A, B: H \rightarrow H$ be bounded, linear, self-adjoint operators. Then
(i) $A+B$ is self-adjoint.
(ii) if $c \in \mathbb{R}$, then $c A$ is self-adjoint.
(iii) if $A B=B A$, then $A B$ is self-adjoint.

Parts (i) and (ii) follow immediately from part (iii) on the previous slide. If $x, y \in H$, then

$$
\langle A B x, y\rangle=\langle B A x, y\rangle=\langle A x, B y\rangle=\langle x, A B y\rangle \quad \Rightarrow \quad(A B)^{*}=A B
$$

## Example

Let $H$ be a real Hilbert space and $M \subset H$ a closed subspace. Then the orthogonal projections $P_{M}: H \rightarrow M$ and $I-P_{M}=: P_{M \perp}: H \rightarrow M^{\perp}$ are self-adjoint.

## Compact operators

## Definition

Let $H_{1}$ and $H_{2}$ be real Hilbert spaces. A bounded linear operator $K$ : $H_{1} \rightarrow H_{2}$ is compact if the sets $K(U) \subset H_{2}$ are compact for every bounded set $U \subset H_{1}$.

The following characterization will be useful.

## Characterization

Let $H_{1}$ and $H_{2}$ be real Hilbert spaces. A bounded linear operator $K: H_{1} \rightarrow H_{2}$ is compact if and only if $\left(K x_{j}\right)_{j=1}^{\infty} \subset H_{2}$ contains a convergent subsequence for every bounded sequence $\left(x_{j}\right)_{j=1}^{\infty} \subset H_{1}$.

Let $H, H_{1}$, and $H_{2}$ be Hilbert spaces. We have the following properties:

- All linear maps to finite-dimensional spaces are compact.
- If $A, B: H_{1} \rightarrow H_{2}$ are compact, then $A+B$ is compact.
- If $K: H_{1} \rightarrow H_{2}$ is compact, then
- $A K$ is compact for all bounded and linear $A: H_{2} \rightarrow H$.
- $K B$ is compact for all bounded and linear $B: H \rightarrow H_{1}$.
- If $K_{n}: H_{1} \rightarrow H_{2}$ are compact operators and $K: H_{1} \rightarrow H_{2}$ is a bounded, linear operator such that $\left\|K_{n}-K\right\| \xrightarrow{n \rightarrow \infty 0} 0$, then $K$ is compact.
- If $K: H_{1} \rightarrow H_{2}$ is compact, then so is $K^{*}: H_{2} \rightarrow H_{1}$.


## Proposition

Let $H_{1}$ and $H_{2}$ be real Hilbert spaces and $A: H_{1} \rightarrow H_{2}$ a continuous linear operator. Then

$$
\begin{aligned}
& H_{1}=\overline{\operatorname{Ker}(A)} \oplus(\operatorname{Ker}(A))^{\perp}=\operatorname{Ker}(A) \oplus \overline{\operatorname{Ran}\left(A^{*}\right)} \\
& H_{2}=\overline{\operatorname{Ran}(A)} \oplus(\operatorname{Ran}(A))^{\perp}=\overline{\operatorname{Ran}(A)} \oplus \operatorname{Ker}\left(A^{*}\right)
\end{aligned}
$$

Proof. $H_{1}=\operatorname{Ker}(A) \oplus(\operatorname{Ker}(A))^{\perp}$ and $H_{2}=\overline{\operatorname{Ran}(A)} \oplus(\overline{\operatorname{Ran}(A)})^{\perp}=\overline{\operatorname{Ran}(A)} \oplus(\operatorname{Ran}(A))^{\perp}$ follow immediately from the previous discussion. ${ }^{\dagger}$ The claim

$$
\begin{equation*}
(\operatorname{Ran}(A))^{\perp}=\operatorname{Ker}\left(A^{*}\right) \tag{4}
\end{equation*}
$$

follows immediately by observing that $x \in \operatorname{Ker}\left(A^{*}\right)$ iff

$$
0=\left\langle A^{*} x, y\right\rangle=\langle x, A y\rangle \quad \text { for all } y \in H_{1} .
$$

The claim $(\operatorname{Ker}(A))^{\perp}=\overline{\operatorname{Ran}\left(A^{*}\right)}$ follows by applying (4) with $A$ replaced by $A^{*}$.

[^0]Appendix: some auxiliary results

Let $X$ and $Y$ be normed spaces. We denote

$$
\mathcal{L}(X, Y):=\{A \mid A: X \rightarrow Y \text { is bounded and linear }\} .
$$

## Proposition

If $Y$ is complete, then $\mathcal{L}(X, Y)$ is complete w.r.t. operator norm (i.e., it is a Banach space).

Proof. Let $x \in X$ and assume that $A_{k} \in \mathcal{L}(X, Y), k \in \mathbb{N}$, is a Cauchy sequence. Then for all $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
m, n>N \quad \Rightarrow \quad\left\|A_{m}-A_{n}\right\|<\frac{\varepsilon}{\|x\|_{x}}
$$

Especially,

$$
\left\|A_{m} x-A_{n} x\right\|_{Y} \leq\left\|A_{m}-A_{n}\right\|\|x\|_{x}<\varepsilon \quad \text { when } m, n>N
$$

so $\left(A_{k} x\right)$ is a Cauchy sequence in $Y$ and therefore the limit

$$
A(x):=\lim _{k \rightarrow \infty} A_{k} x
$$

exists.

It is easy to see that $A(x):=\lim _{k \rightarrow \infty} A_{k} x$ is linear. It is also bounded: there exists $N \in \mathbb{N}$ such that

$$
m, n>N \quad \Rightarrow \quad\left\|A_{m}-A_{n}\right\|<1
$$

Fix $m>N$. Then for all $n>m$,

$$
\left\|A_{n}\right\|<1+\left\|A_{m}\right\|
$$

and thus

$$
\left\|A_{n} x\right\|_{Y} \leq\left(1+\left\|A_{m}\right\|\right)\|x\|_{X}
$$

But $\|A x\|_{Y}=\lim _{n \rightarrow \infty}\left\|A_{n} x\right\|_{Y} \leq\left(1+\left\|A_{m}\right\|\right)\|x\|_{x}$. Therefore $A$ is bounded.
Finally, we need to show that $\left\|A_{n}-A\right\| \rightarrow 0$ as $n \rightarrow \infty$. Since we assumed $\left(A_{k}\right)_{k=1}^{\infty}$ to be Cauchy, let $\varepsilon>0$ be s.t. for $m, n>N$, there holds $\left\|A_{m}-A_{n}\right\|<\varepsilon$. Then

$$
\begin{aligned}
& \left\|\left(A-A_{n}\right) x\right\|_{Y}=\lim _{m \rightarrow \infty}\left\|A_{m} x-A_{n} x\right\|_{Y} \leq \varepsilon\|x\|_{x} \quad \text { for all } x \in X \\
& \Rightarrow \quad\left\|A-A_{n}\right\|<\varepsilon
\end{aligned}
$$

Hence $\left\|A-A_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

If $X=H_{1}$ and $Y=H_{2}$ are Hilbert spaces, then $\mathcal{L}\left(H_{1}, H_{2}\right)$ is a complete normed space.

In general, $\mathcal{L}\left(H_{1}, H_{2}\right)$ is not a Hilbert space even when both $H_{1}$ and $H_{2}$ are. However, in the special case $\mathcal{L}(H, \mathbb{R})$ it turns out that indeed one can associate an inner product that induces the operator norm $\|\cdot\|$ - meaning that $\mathcal{L}(H, \mathbb{R})$ is a Hilbert space! This is a consequence of the Riesz representation theorem (details omitted).

## Basic properties of vector-valued series

## Definition

Let $E$ be a normed space and $\left(x_{k}\right) \subset E$. Define the $n^{\text {th }}$ partial sum $S_{n}:=\sum_{k=1}^{n} x_{k}$. If there exists an element $S \in E$ such that $\lim _{n \rightarrow \infty}\left\|S-S_{n}\right\|=0$, then we say that the series $\sum_{k=1}^{\infty} x_{k}$ is convergent (in $E$ ) and denote

$$
S=\sum_{k=1}^{\infty} x_{k} .
$$

Moreover, we say that the series $\sum_{k=1}^{\infty} x_{k}$ is absolutely convergent if $\sum_{k=1}^{\infty}\left\|x_{k}\right\|<\infty$.

## Proposition

The normed space $E$ is a Banach space iff every absolutely convergent series $\sum_{k=1}^{\infty} x_{k}$ is convergent in $E$.

Theorem (Generalized Pythagorean theorem)
Let $\left(e_{k}\right)$ be an orthonormal sequence in Hilbert space $H$ and let $\left(\lambda_{k}\right) \subset \mathbb{R}$. Then

$$
\sum_{k=1}^{\infty} \lambda_{k} e_{k} \text { is convergent iff } \sum_{k=1}^{\infty}\left|\lambda_{k}\right|^{2}<\infty
$$

In this case, we have

$$
\left\|\sum_{k=1}^{\infty} \lambda_{k} e_{k}\right\|^{2}=\sum_{k=1}^{\infty}\left|\lambda_{k}\right|^{2} .
$$

## Neumann series: "Sufficiently small perturbations of the

 identity are still invertible"The following result is a well-known generalization of the geometric series formula, named after $19^{\text {th }}$ century mathematician Carl Neumann.

Theorem (Neumann series)
Let $H$ be a real Hilbert space and let $A \in \mathcal{L}(H):=\mathcal{L}(H, H)$ be such that $\|A\|<1$. Then I $-A$ is invertible in $\mathcal{L}(H)$ with

$$
(I-A)^{-1}=I+A+\cdots+A^{n}+\cdots=\sum_{k=0}^{\infty} A^{k}
$$

and this series converges in operator norm.
Proof. Let $B_{m, n}:=\sum_{k=m}^{n} A^{k}, m<n$. Since $\|A\|<1$, we have

$$
\left\|B_{m, n}\right\| \leq \sum_{k=m}^{n}\|A\|^{k}=\|A\|^{m} \sum_{k=0}^{m-n}\|A\|^{k}=\|A\|^{m} \frac{1-\|A\|^{n-m+1}}{1-\|A\|^{m}} \xrightarrow{m, n \rightarrow \infty} 0 .
$$

$\therefore$ The partial sums $\sum_{k=0}^{n} A^{k}$ form a Cauchy sequence in $\mathcal{L}(H)$.

Since $H$ is a Hilbert space, $\mathcal{L}(H)$ is a Banach space and the limit

$$
B:=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} A^{k} \in \mathcal{L}(H)
$$

exists. We need to prove that $(I-A) B=I=B(I-A)$. Let

$$
B_{n}:=I+A+\cdots+A^{n} .
$$

Then

$$
\begin{aligned}
& (I-A) B_{n}=I-A^{n+1} \\
& B_{n}(I-A)=I-A^{n+1}
\end{aligned}
$$

and since $\|A\|<1,\left\|A^{n+1}\right\| \leq\|A\|^{n+1} \xrightarrow{n \rightarrow \infty} 0$, we thus obtain

$$
I-A^{n+1} \xrightarrow{n \rightarrow \infty} I \quad \text { in } \mathcal{L}(H)
$$

and

$$
(I-A) B=\lim _{n \rightarrow \infty}(I-A) B_{n}=I=\lim _{n \rightarrow \infty} B_{n}(I-A)=B(I-A)
$$

Theorem (Bessel's inequality)
Let $H$ be a real Hilbert space and let $\left(e_{n}\right)$ be an orthonormal sequence in H. Then

$$
\sum_{n=1}^{\infty}\left|\left\langle x, e_{n}\right\rangle\right|^{2} \leq\|x\|^{2} \quad \text { for all } x \in H
$$

Especially $\lim _{n \rightarrow \infty}\left\langle x, e_{n}\right\rangle=0$.
Proof. Let $k \in \mathbb{N}$. Noting that

$$
\left\langle x-\sum_{n=1}^{k}\left\langle x, e_{n}\right\rangle e_{n}, e_{j}\right\rangle=\left\langle x, e_{j}\right\rangle-\sum_{n=1}^{k}\left\langle x, e_{n}\right\rangle\left\langle e_{n}, e_{j}\right\rangle=\left\langle x, e_{j}\right\rangle-\left\langle x, e_{j}\right\rangle=0
$$

for all $j \in\{1, \ldots, k\}$, we deduce that $x-\sum_{n=1}^{k}\left\langle x, e_{n}\right\rangle e_{n} \perp \sum_{n=1}^{k}\left\langle x, e_{n}\right\rangle e_{n}$ (recall that the orthogonal complement is a subspace). By the Pythagorean theorem,

$$
\|x\|^{2}=\left\|x-\sum_{n=1}^{k}\left\langle x, e_{n}\right\rangle e_{n}\right\|^{2}+\left\|\sum_{n=1}^{k}\left\langle x, e_{n}\right\rangle e_{n}\right\|^{2} \geq\left\|\sum_{n=1}^{k}\left\langle x, e_{n}\right\rangle e_{n}\right\|^{2}=\sum_{n=1}^{k}\left|\left\langle x, e_{n}\right\rangle\right|^{2}
$$

Letting $k \rightarrow \infty$ yields the assertion.

## Lax-Milgram lemma

Proposition (Lax-Milgram lemma)
Let $H$ be a real Hilbert space and let $B: H \times H \rightarrow \mathbb{R}$ be a bilinear mapping ${ }^{\dagger}$ with $C, c>0$ such that

$$
\begin{aligned}
& |B(u, v)| \leq C\|u\| \cdot\|v\| \quad \text { for all } u, v \in H \\
& B(u, u) \geq c\|u\|^{2} \quad \text { for all } u \in H .
\end{aligned}
$$

(boundedness) (coercivity)

Let $F: H \rightarrow \mathbb{R}$ be a bounded linear mapping. Then there exists a unique element $u \in H$ satisfying

$$
B(u, v)=F(v) \quad \text { for all } v \in H
$$

and

$$
\|u\| \leq \frac{1}{c}\|F\| .
$$

$$
\begin{aligned}
& \dagger B(u+v, w)=B(u, w)+B(v, w), B(a u, v)=a B(u, v), \\
& B(u, v+w)=B(u, v)+B(u, w), B(u, a v)=a B(u, v) \\
& \text { for all } u, v, w \in H \text { and } a \in \mathbb{R} \text {. }
\end{aligned}
$$

Proof. 1) Let $v \in H$ be fixed. Then the mapping

$$
T: w \mapsto B(v, w), H \rightarrow \mathbb{R}
$$

is bounded and linear. It follows from the Riesz representation theorem that there exists a unique element $a \in H$ with

$$
T w=\langle a, w\rangle \quad \text { for all } w \in H .
$$

Let us define the mapping $A: H \rightarrow H$ by setting

$$
A v=a .
$$

Then

$$
B(v, w)=\langle A v, w\rangle \quad \text { for all } v, w \in H .
$$

2) We show that the mapping $A: H \rightarrow H$ is linear and bounded. Clearly,

$$
\begin{aligned}
\left\langle A\left(c_{1} v_{1}+c_{2} v_{2}\right), w\right\rangle & =B\left(c_{1} v_{1}+c_{2} v_{2}, w\right) \\
& =c_{1} B\left(v_{1}, w\right)+c_{2} B\left(v_{2}, w\right) \\
& =\left\langle c_{1} A v_{1}+c_{2} A v_{2}, w\right\rangle
\end{aligned}
$$

for all $w \in H$, so $A\left(c_{1} v_{1}+c_{2} v_{2}\right)=c_{1} A v_{1}+c_{2} A v_{2}$. Moreover,

$$
\begin{aligned}
\|A v\|^{2} & =\langle A v, A v\rangle \\
& =B(v, A v) \\
& \leq C\|v\|\|A v\|
\end{aligned}
$$

which implies that

$$
\|A v\| \leq C\|v\|
$$

3) We show that

$$
\left\{\begin{array}{l}
A \text { is one-to-one } \\
\operatorname{Ran}(A)=A H \text { is closed in } H
\end{array}\right.
$$

We begin by noting that

$$
c\|v\|^{2} \leq B(v, v)=\langle A v, v\rangle \leq\|A v\|\|v\|
$$

and thus

$$
\begin{equation*}
\|A v\| \geq c\|v\| \quad \text { for all } v \in H \tag{5}
\end{equation*}
$$

Especially

$$
A v=A w \Rightarrow A(v-w)=0 \Rightarrow 0=\|A(v-w)\| \geq c\|v-w\| \geq 0 \Rightarrow v=w
$$

so $A$ is one-to-one.
To see that $\operatorname{Ran}(A)$ is closed, let $y_{j}=A x_{j} \in \operatorname{Ran}(A)$. The goal is to show that $y:=\lim _{j \rightarrow \infty} y_{j} \in \operatorname{Ran}(A)$. We observe that

$$
\lim _{j, k \rightarrow \infty}\left\|x_{j}-x_{k}\right\| \stackrel{(5)}{\leq} \lim _{j, k \rightarrow \infty} \frac{1}{c}\left\|y_{j}-y_{k}\right\|=0
$$

i.e., $\left(x_{j}\right)_{j=1}^{\infty}$ is Cauchy and $x:=\lim _{j \rightarrow \infty} x_{j} \in H$ exists by completeness. Moreover,

$$
\lim _{j \rightarrow \infty}\left\|A x_{j}-A x\right\| \leq \lim _{j \rightarrow \infty}\|A\|\left\|x_{j}-x\right\| \leq C \lim _{j \rightarrow \infty}\left\|x_{j}-x\right\|=0
$$

and therefore

$$
y=\lim _{j \rightarrow \infty} A x_{j}=A x \in \operatorname{Ran}(A)
$$

4) We show that $\operatorname{Ran}(A)=H$. We prove this by contradiction: suppose that $\operatorname{Ran}(A)=\overline{\operatorname{Ran}(A)} \neq H$. Then there exists $w \in \operatorname{Ran}(A)^{\perp}, w \neq 0 .{ }^{\dagger}$
This implies that

$$
\|w\|^{2} \leq \frac{1}{c} B(w, w)=\frac{1}{c}\langle A w, w\rangle=0
$$

i.e., $w=0$. This contradiction shows that $\operatorname{Ran}(A)=H$. Therefore $A: H \rightarrow H$ is a continuous bijection.
5) Existence of a solution. We use the Riesz representation theorem: since $F: H \rightarrow \mathbb{R}$ is linear and continuous, there exists $b \in H$ such that

$$
F(v)=\langle b, v\rangle \quad \text { for all } v \in H
$$

Define $u:=A^{-1} b$. Hence

$$
\begin{aligned}
A u=b & \Leftrightarrow \quad\langle A u, v\rangle=\langle b, v\rangle \quad \text { for all } v \in H \\
& \Leftrightarrow \quad B(u, v)=F(v) \quad \text { for all } v \in H .
\end{aligned}
$$

${ }^{\dagger}$ Since $\left(\operatorname{Ran}(A)^{\perp}\right)^{\perp}=\overline{\operatorname{Ran}(A)} \neq H \Rightarrow(\operatorname{Ran}(A))^{\perp} \neq\{0\}$.
6) Uniqueness. Suppose that

$$
\begin{array}{ll}
B\left(u_{1}, w\right)=F(w) & \text { for all } w \in H \\
B\left(u_{2}, w\right)=F(w) & \text { for all } w \in H
\end{array}
$$

Let $u:=u_{1}-u_{2}$. By linearity,

$$
B(u, w)=0 \quad \text { for all } w \in H
$$

The coercivity of $B$ implies that

$$
\|u\|^{2} \leq \frac{1}{c} B(u, u)=0
$$

so that $u=0$, i.e., $u_{1}=u_{2}$.
7) A priori bound. If $B(u, w)=F(w)$ for all $w \in H$, then by setting $w=u$ we obtain

$$
\|u\|^{2} \leq \frac{1}{c} B(u, u)=\frac{1}{c} F(u) \leq \frac{1}{c}\|F\|\|u\|
$$

which immediately yields

$$
\|u\| \leq \frac{1}{c}\|F\|
$$

## Density argument

## Lemma

Let $X, Y$ be Banach spaces and let $Z \subset X$ be a dense subspace. If $T: Z \rightarrow Y$ is a linear mapping such that

$$
\begin{equation*}
\left\|T_{x}\right\|_{Y} \leq C\|x\|_{\sim}, \quad x \in Z \tag{6}
\end{equation*}
$$

then there exists a unique extension $\widetilde{T}: X \rightarrow Y$ with $\left.\widetilde{T}\right|_{Z}=T$ and

$$
\begin{equation*}
\left\|\tilde{T}_{X}\right\|_{Y} \leq C\|x\|_{X}, \quad x \in X \tag{7}
\end{equation*}
$$

Moreover, if (6) holds with equality, then so does (7).
Proof. Let $x \in X$. Because $Z \subset X$ is dense, there exists a sequence $\left(z_{k}\right)_{k=1}^{\infty} \subset Z$ s.t. $\left\|z_{k}-x\right\| X \xrightarrow{k \rightarrow \infty} 0$. Let $\varepsilon>0$. Since $\left(z_{k}\right)_{k=1}^{\infty}$ is a Cauchy sequence, there exists $N \in \mathbb{N}$ s.t.

$$
m, n \geq N \quad \Rightarrow \quad\left\|z_{m}-z_{n}\right\|_{x}<\frac{\varepsilon}{C}
$$

Then there holds

$$
\left\|T z_{m}-T_{z_{n}}\right\|_{Y}=\left\|T\left(z_{m}-z_{n}\right)\right\| Y \leq C\left\|z_{m}-z_{n}\right\|_{X}<\varepsilon,
$$

which means that $\left(T_{z_{k}}\right)_{k=1}^{\infty}$ is a Cauchy sequence in $Y$. Since $Y$ is complete, there exists $y:=\lim _{k \rightarrow \infty} T_{z_{k}}$. Hence we may define $\tilde{T}: X \rightarrow Y$ by setting $\tilde{T}(x)=y$.

We begin by showing that $\widetilde{T}$ is well-defined. Let $\left(z_{k}\right)_{k=1}^{\infty},\left(\widetilde{z}_{k}\right)_{k=1}^{\infty}$ be two sequences in $Z$ s.t. $z_{k}, \widetilde{z}_{k} \xrightarrow{k \rightarrow \infty} x$ in $X$. Then

$$
\left\|T z_{k}-T \widetilde{z}_{k}\right\|_{Y}=\left\|T\left(z_{k}-\widetilde{z}_{k}\right)\right\|_{Y} \leq C\left\|z_{k}-\widetilde{z}_{k}\right\| \leq C\left\|z_{k}-x\right\|+C\left\|\widetilde{z}_{k}-x\right\| \xrightarrow{k \rightarrow \infty} 0 .
$$

Recalling that $\tilde{T}(x):=\lim _{k \rightarrow \infty} T z_{k}$, we obtain

$$
\left\|T \widetilde{z}_{k}-\widetilde{T}(x)\right\| \leq\left\|T \widetilde{z}_{k}-T z_{k}\right\|+\left\|T z_{k}-\widetilde{T}(x)\right\| \xrightarrow{k \rightarrow \infty} 0
$$

showing that $\tilde{T}$ is well-defined.
Next we show that $\tilde{T}$ is linear. Let $x, \tilde{x} \in X$ and $a, b \in \mathbb{R}$. Let $Z \ni z_{k} \xrightarrow{k \rightarrow \infty} x$ and $Z \ni \widetilde{z}_{k} \xrightarrow{k \rightarrow \infty} \widetilde{x}$. Now $a x+b \widetilde{x} \in X$ and $Z \ni a z_{k}+b \widetilde{z}_{k} \rightarrow a x+b \widetilde{x}$. Thus

$$
\widetilde{T}(a x+b \widetilde{x})=\lim _{k \rightarrow \infty} T\left(a z_{k}+b \widetilde{z}_{k}\right)=a \lim _{k \rightarrow \infty} T z_{k}+b \lim _{k \rightarrow \infty} T \widetilde{z}_{k}=a \widetilde{T}_{x}+b \widetilde{T}_{x}
$$

since the limit is linear. ${ }^{\dagger}$
Since the norm is continuous,

$$
\|\widetilde{T} x\|=\left\|\lim _{k \rightarrow \infty} T x_{k}\right\|=\lim _{k \rightarrow \infty}\left\|T x_{k}\right\| \leq C \lim _{k \rightarrow \infty}\left\|x_{k}\right\|=C\|x\|
$$

Finally, $\left.\tilde{T}\right|_{z}=T$ holds by construction $\stackrel{\substack{k \rightarrow \infty \\ \text { and }}}{ }$ the uniqueness of the limit $T z_{k} \rightarrow y$ ensures that there cannot exist another mapping $L: X \rightarrow Y$ s.t. $L \mid z=T$ and $\|L x\| \leq C\|x\|$.
${ }^{\dagger}$ Let $y:=\lim _{k \rightarrow \infty} T z_{k}$ and $\widetilde{y}:=\lim _{k \rightarrow \infty} T \widetilde{z}_{k}$.
Then $\left\|T\left(a z_{k}+b \widetilde{z}_{k}\right)-a y-b \widetilde{y}\right\| \leq a\left\|T z_{k}-y\right\|+b\left\|T \widetilde{z}_{k}-\widetilde{y}\right\| \rightarrow 0$.
Hence $\lim _{k \rightarrow \infty} T\left(a z_{k}+b \widetilde{z}_{k}\right)=a \lim _{k \rightarrow \infty} T z_{k}+b \lim _{k \rightarrow \infty} T \widetilde{z}_{k}$.


[^0]:    ${ }^{\dagger}$ Here we use the fact that $\bar{X}^{\perp}=X^{\perp}$ for any subspace $X$ of $H$; see exercise 1 .

