Inverse Problems

Sommersemester 2023

> Vesa Kaarnioja
> vesa.kaarnioja@fu-berlin.de

FU Berlin, FB Mathematik und Informatik
Second lecture, April 24, 2023

Practical matters

- Monday May 1 (next week) is a public holiday \rightarrow no lecture on May 1!
- We will have a bonus live-coding lecture on Tuesday May 2 about Computerized Tomography in place of the usual exercise session (this material will not be essential to the course).
- The deadline for the second exercise sheet will be moved to Tuesday May 9. Note that tomorrow's exercise session will happen as planned.

Spectral theory of compact operators

Let E be a (complex) Banach space and $A: E \rightarrow E$ a bounded linear operator. The spectrum of operator A is denoted by

$$
\sigma(A):=\{\lambda \in \mathbb{C} \mid \lambda I-A \text { does not have an inverse }\} .
$$

Proposition

Let H be a real Hilbert space and $A: H \rightarrow H$ a bounded linear operator. Then

$$
\sup \{|\lambda|: \lambda \in \sigma(A)\} \leq\|A\| .
$$

Proof. Let $|\lambda|>\|A\|$. Then $\lambda I-A=\lambda\left(I-\frac{1}{\lambda} A\right)$, where $\left\|\frac{1}{\lambda} A\right\|<1$. Thus $I-\frac{1}{\lambda} A$ is invertible (its inverse can be expressed as a Neumann series), and therefore the operator $\lambda I-A$ is always invertible for all $|\lambda|>\|A\|$.

Lemma

The eigenvalues of a self-adjoint operator $A: H \rightarrow H$ are real-valued.
Proof. If $A x=\lambda x$, with $x \neq 0$, then ${ }^{\dagger}$

$$
\lambda\langle x, x\rangle=\langle A x, x\rangle=\left\langle x, A^{*} x\right\rangle=\langle x, \lambda x\rangle=\bar{\lambda}\langle x, x\rangle \quad \Rightarrow \quad \lambda=\bar{\lambda} \in \mathbb{R} \quad \square
$$

${ }^{\dagger}$ If the scalar field of an inner product space is complex, then recall that the inner product needs to satisfy $\langle x, y\rangle=\overline{\langle y, x\rangle}$.

Lemma

Let H be a real Hilbert space and let $A: H \rightarrow H$ be a self-adjoint operator. Then

$$
\|A\|=\sup _{\|x\|=1}|\langle A x, x\rangle|
$$

Proof. Let us denote $\alpha:=\sup \{|\langle A x, x\rangle|:\|x\|=1\}$.
$" \geq$ ", By Cauchy-Schwarz, $|\langle A x, x\rangle| \leq\|A\|$ for $\|x\|=1$, and thus $\alpha \leq\|A\|$. Using $A^{*}=A$, we obtain the identity

$$
\begin{aligned}
& \langle A(x+y), x+y\rangle-\langle A(x-y), x-y\rangle \\
& =\langle A x, x\rangle+\langle A x, y\rangle+\langle A y, x\rangle+\langle A y, y\rangle-\langle A x, x\rangle+\langle A x, y\rangle+\langle A y, x\rangle-\langle A y, y\rangle \\
& =4\langle A x, y\rangle \text { for all } x, y \in H .
\end{aligned}
$$

Let $x, y \in H$ be such that $\|x\|=1=\|y\|$. Using the inequality $|\langle A v, v\rangle| \leq \alpha\|v\|^{2}$ for all $v \in H$ and the parallelogram rule (exercise 1), we obtain

$$
\begin{aligned}
4\langle A x, y\rangle \leq|\langle A(x+y), x+y\rangle|+|\langle A(x-y), x-y\rangle| & \leq \alpha\left(\|x+y\|^{2}+\|x-y\|^{2}\right) \\
& =2 \alpha\left(\|x\|^{2}+\|y\|^{2}\right)=4 \alpha .
\end{aligned}
$$

Let $\lambda=\operatorname{sign}\langle\boldsymbol{A} x, y\rangle$. Then $|\langle\boldsymbol{A} x, y\rangle|=\lambda\langle\boldsymbol{A} x, y\rangle=\langle\boldsymbol{A}(\lambda x), y\rangle \leq \alpha$
$\Rightarrow\|A\|=\sup _{\|x\|=1} \sup _{\|y\|=1}|\langle A x, y\rangle| \leq \alpha$.

If A is a compact operator, then there exists an element in H which satisfies the following.

Lemma

Let H be a real Hilbert space and let $A: H \rightarrow H$ be a compact, self-adjoint operator. Then

$$
\begin{equation*}
\|A\|=\left|\left\langle A x_{0}, x_{0}\right\rangle\right| \quad \text { for some } x_{0} \in H,\left\|x_{0}\right\|=1 \tag{1}
\end{equation*}
$$

Moreover, x_{0} is an eigenvector of $A, A x_{0}=\lambda_{0} x$ with $\left|\lambda_{0}\right|=\|A\|$.
Proof. Suppose that $A \neq 0$. By the previous lemma,

$$
\|A\|=\sup \{|\langle A x, x\rangle|:\|x\|=1\},
$$

and thus there exists a sequence $\left(x_{n}\right) \subset\{x \in H:\|x\|=1\}$ such that $\left|\left\langle A x_{n}, x_{n}\right\rangle\right|^{n \rightarrow \infty}\|A\|$, i.e., $\left\langle A x_{n}, x_{n}\right\rangle \xrightarrow{n \rightarrow \infty} \lambda_{0}$, where $\lambda_{0} \in\{-\|A\|,\|A\|\}$. Now $0 \leq\left\|A x_{n}-\lambda_{0} x_{n}\right\|^{2}=\left\|A x_{n}\right\|^{2}+\lambda_{0}^{2}\left\|x_{n}\right\|^{2}-2 \lambda_{0}\left\langle A x_{n}, x_{n}\right\rangle \leq \lambda_{0}^{2}+\lambda_{0}^{2}-2 \lambda_{0}\left\langle A x_{n}, x_{n}\right\rangle^{n \rightarrow \infty} 0$.

By compactness of A, there exists a subsequence $\left(x_{n_{j}}\right)$ of $\left(x_{n}\right)$ and a limit $x_{0} \in H$ such that $A x_{n_{j}} \rightarrow x_{0}$. Since $A x_{n_{j}}-\lambda_{0} x_{n_{j}} \rightarrow 0$, then $\lambda x_{n_{j}} \rightarrow x_{0},\left\|x_{0}\right\|=1$, and $A x_{0}=\lambda_{0} x_{0}$.

Theorem (Spectral theorem for compact, self-adjoint operators)
Let H be a real Hilbert space and let $A: H \rightarrow H$ be a compact, self-adjoint operator. Then

- each $\lambda \in \sigma(A) \backslash\{0\}$ is an eigenvalue of A;
- 0 is the only limit point of $\sigma(A)$, i.e., if there are an infinite number of eigenvalues $\left(\lambda_{n}\right) \subset \mathbb{R}$, then $\lim _{n} \lambda_{n}=0$;
- the eigenvectors $\left(u_{n}\right) \subset H$ form an orthonormal sequence such that

$$
A x=\sum_{n} \lambda_{n}\left\langle x, u_{n}\right\rangle u_{n}
$$

Proof. We have already established that there exists $u_{0} \in H$ s.t. $A u_{0}=\lambda_{0} u_{0},\left|\lambda_{0}\right|=\|A\|$ and $\left\|u_{0}\right\|=1$. Define $H_{1}:=\left\{u_{0}\right\}^{\perp}$. If $y \in H_{1}$, then

$$
\left\langle A y, u_{0}\right\rangle=\left\langle y, A u_{0}\right\rangle=\lambda_{1}\left\langle y, u_{0}\right\rangle=0
$$

which means that $\left.A\right|_{H_{1}}: H_{1} \rightarrow H_{1}$ is a compact, self-adjoint operator.

By (1), there exists $u_{1} \in H_{1}$ such that

$$
\left\|\left.A\right|_{H_{1}}\right\|=\left|\left\langle u_{1}, A u_{1}\right\rangle\right|
$$

with $A u_{1}=\lambda_{1} u_{1}$, where $\left|\lambda_{1}\right| \leq\left|\lambda_{0}\right|$ and $\left\langle u_{0}, u_{1}\right\rangle=0$.
Next, let $H_{2}:=\left\{u_{0}, u_{1}\right\}^{\perp}$. As before, $\left.A\right|_{H_{2}}: H_{2} \rightarrow H_{2}$ is a compact, self-adjoint operator and (1) again implies that there exists $u_{2} \in H_{2}$ such that $A u_{2}=\lambda_{2} u_{2}$, where $\left|\lambda_{2}\right| \leq\left|\lambda_{1}\right| \leq\left|\lambda_{0}\right|$ and $\left\|u_{2}\right\|=1$.

Proceeding inductively, we obtain $H_{n}:=\left\{u_{0}, \ldots, u_{n-1}\right\}^{\perp} \subset H_{n-1}$, where $\left.A\right|_{H_{n}}: H_{n} \rightarrow H_{n}$ is compact and self-adjoint, $\left|\lambda_{n}\right|=\left\|\left.A\right|_{H_{n}}\right\|$, $\left|\lambda_{n}\right| \leq\left|\lambda_{n-1}\right| \leq \cdots \leq\left|\lambda_{0}\right|$ and $A u_{n}=\lambda_{n} u_{n}$ for some $u_{n} \in H_{n},\left\|u_{n}\right\|=1$. If $\operatorname{dim} \operatorname{Ran}(A)=\infty$, we claim that $\left|\lambda_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. Since $u_{k} \perp u_{j}$ whenever $j \neq k$, we deduce that

$$
\left|\lambda_{j}\right|^{2}+\left|\lambda_{k}\right|^{2}=\left\|\lambda_{k} u_{k}-\lambda_{j} u_{j}\right\|^{2}=\left\|A u_{k}-A u_{j}\right\|^{2} .
$$

Note that $\left(\lambda_{j}^{2}\right)$ is convergent as a bounded, monotonic sequence. Since $\left(u_{j}\right)$ is bounded and A is compact, $\left(A u_{j}\right)$ contains a convergent subsequence - and hence it contains a Cauchy subsequence. This implies that $\left(\lambda_{j}^{2}\right)$ contains a subsequence which converges to 0 . Since $\left(\lambda_{j}^{2}\right)$ is a convergent sequence, it follows that $\lim _{j \rightarrow \infty} \lambda_{j}=0$.

Let $M:=\operatorname{span}\left\{u_{n} \mid n \in \mathbb{N}\right\}^{\perp}$. The previous discussion implies that $\left.A\right|_{M}=0$. Let $H_{\infty}:=\operatorname{span}\left\{u_{n} \mid u_{n} \in \mathbb{N}\right\}$. By the orthogonal decomposition $H=M \oplus H_{\infty}$, the orthogonal projection $P: H \rightarrow H_{\infty}$ can be written as

$$
P x=\sum_{n}\left\langle x, u_{n}\right\rangle u_{n}, \quad x \in H
$$

(proof left as an exercise)
and therefore

$$
A x=A P x=A\left(\sum_{n}\left\langle x, u_{n}\right\rangle u_{n}\right)=\sum_{n}\left\langle x, u_{n}\right\rangle A u_{n}=\sum_{n} \lambda_{n}\left\langle x, u_{n}\right\rangle u_{n}
$$

as desired.
Finally, to see that each $\lambda \in \sigma(A) \backslash\{0\}$ is an eigenvalue, suppose that $\lambda \notin \overline{\left\{\lambda_{n} \mid n \in \mathbb{N}\right\}} \cup\{0\}$. Then there exists $\delta>0$ such that $\left|\lambda-\lambda_{n}\right|>\delta$ for all $n \in \mathbb{N}$ and $|\lambda|>\delta$. If $Q: H \rightarrow M$ is an orthogonal projection, then

$$
(\lambda I-A)^{-1} x=\sum_{n} \frac{1}{\lambda-\lambda_{n}}\left\langle x, u_{n}\right\rangle u_{n}+\frac{1}{\lambda} Q x, \quad x \in H
$$

is bounded by the previous discussion, i.e., $\lambda \notin \sigma(A)$.

Our goal is to obtain a spectral expansion for all compact operators A: $H_{1} \rightarrow H_{2}$. To begin with, note that if $A: H_{1} \rightarrow H_{2}$ is a compact operator, then $A^{*} A$: $H_{1} \rightarrow H_{1}$ is compact and self-adjoint since

$$
\left\langle A^{*} A x, y\right\rangle_{H_{1}}=\langle A x, A y\rangle_{H_{2}}=\left\langle x, A^{*} A y\right\rangle_{H_{1}} \quad \text { for all } \quad x, y \in H_{1} .
$$

Note in addition that the eigenvalues of $A^{*} A$ are nonnegative: if $A^{*} A v_{n}=\lambda_{n} v_{n},\left\|v_{n}\right\|_{H_{1}}=1$, then

$$
\lambda_{n}=\lambda_{n}\left\|v_{n}\right\|_{H_{1}}^{2}=\left\langle A^{*} A v_{n}, v_{n}\right\rangle_{H_{1}}=\left\|A v_{n}\right\|_{H_{2}}^{2} \geq 0
$$

In particular, we can write down the eigendecomposition

$$
A^{*} A x=\sum_{n} \lambda_{n}\left\langle x, v_{n}\right\rangle_{H_{1}} v_{n},
$$

where $\left(v_{n}\right) \subset H_{1}$ is an orthonormal sequence of eigenvectors.

Lemma

Let H_{1} and H_{2} be real Hilbert spaces and let $A: H_{1} \rightarrow H_{2}$ be a compact operator. Then there exist orthonormal sequences $\left(v_{n}\right) \subset H_{1}$ and $\left(w_{n}\right) \subset H_{2}$ such that

$$
\begin{equation*}
A v_{n}=\sqrt{\lambda_{n}} w_{n} \quad \text { and } \quad A^{*} w_{n}=\sqrt{\lambda_{n}} v_{n} \tag{2}
\end{equation*}
$$

where $\lambda_{1} \geq \lambda_{2} \geq \cdots>0$ are the nonzero eigenvalues of $A^{*} A$. Define $|A|: H_{1} \rightarrow H_{2}$ by setting $|A| x=\sum_{n} \sqrt{\lambda_{n}}\left\langle x, v_{n}\right\rangle_{H_{1}} w_{n}$. Then
$|A|$ is compact and $|A|^{*}|A|=A^{*} A$.
Proof. Let $\left(v_{n}\right) \subset H_{1}$ denote the orthonormal sequence of eigenfunctions of $A^{*} A$, i.e.,

$$
A^{*} A v_{n}=\lambda_{n} v_{n}
$$

and define a second sequence by

$$
w_{n}=\frac{1}{\sqrt{\lambda_{n}}} A v_{n} .
$$

Straightforward computations show that (2) holds as well as $\left\langle w_{n}, w_{n}\right\rangle_{H_{2}}=1$ and $\left\langle w_{n}, w_{m}\right\rangle_{H_{2}}=0$ whenever $n \neq m$.

Next, let us show that $|A|: H_{1} \rightarrow H_{2}$ is compact. It follows from the generalized Pythagorean theorem and Bessel's inequality that

$$
\begin{aligned}
& \left\||A| x-\sum_{n=1}^{m} \sqrt{\lambda_{n}}\left\langle x, v_{n}\right\rangle_{H_{1}} w_{n}\right\|_{H_{2}}^{2}=\left\|\sum_{n=m+1}^{\infty} \sqrt{\lambda_{n}}\left\langle x, v_{n}\right\rangle_{H_{1}} w_{n}\right\|_{H_{2}}^{2} \\
& =\sum_{n=m+1}^{\infty}\left|\lambda_{n}\left\|\left.\left\langle x, v_{n}\right\rangle_{H_{1}}\right|^{2} \leq \sup _{n \geq m+1}\left|\lambda_{n}\right| \cdot\right\| x \|^{2}\right. \\
& \leq \sup _{n \geq m+1}\left|\lambda_{n}\right| \text { for all }\|x\|_{H_{1}} \leq 1 .
\end{aligned}
$$

Thus $\left\||A|-\sum_{n=1}^{m} \sqrt{\lambda_{n}}\left\langle\cdot, v_{n}\right\rangle_{H^{1}} w_{n}\right\| \leq \sup _{n \geq m+1} \sqrt{\lambda_{n}} \rightarrow 0$ as $m \rightarrow \infty$. Since the operators $x \mapsto\left\langle x, v_{n}\right\rangle_{H_{1}} w_{n}$ have 1-dimensional range, they are compact. Moreover, finite sums $\sum_{n=1}^{m} \sqrt{\lambda_{n}}\left\langle\cdot, v_{n}\right\rangle_{H_{1}} w_{n}$ of compact operators are compact and, in consequence, their limiting operator $|A|$ is compact. (See, e.g., properties of compact operators from the lecture notes of week 1.)

Finally, we wish to show that $|A|^{*}|A|=A^{*} A$. It is not difficult to check that

$$
|A|^{*}=\sum_{n} \sqrt{\lambda_{n}}\left\langle\cdot, w_{n}\right\rangle_{H_{2}} v_{n} .
$$

Let $x \in H_{1}$. A direct computation then reveals that

$$
\begin{aligned}
|A|^{*}|A| x & =|A|^{*}\left(\sum_{n} \sqrt{\lambda_{n}}\left\langle x, v_{n}\right\rangle_{H_{1}} w_{n}\right) \\
& =\sum_{m} \sqrt{\lambda_{m}}\left\langle\sum_{n} \sqrt{\lambda_{n}}\left\langle x, v_{n}\right\rangle_{H_{1}} w_{n}, w_{m}\right\rangle_{H_{2}} v_{m} \\
& =\sum_{m, n} \sqrt{\lambda_{m} \lambda_{n}}\left\langle x, v_{n}\right\rangle_{H_{1}}\left\langle w_{n}, w_{m}\right\rangle_{H_{2}} v_{m} \\
& =\sum_{n} \lambda_{n}\left\langle x, v_{n}\right\rangle_{H_{1}} v_{n}=A^{*} A x,
\end{aligned}
$$

where we used $\left\langle w_{n}, w_{n}\right\rangle_{H_{2}}=1$ and $\left\langle w_{n}, w_{m}\right\rangle_{H_{2}}=0$ whenever $n \neq m$.

Proposition (Polar decomposition)

Let H_{1} and H_{2} be real Hilbert spaces, $A: H_{1} \rightarrow H_{2}$ a compact operator, and let $|A|$ be defined as before. Then there exists a bounded, linear operator $U: H_{2} \rightarrow H_{2}$ such that

$$
A=U|A|
$$

where $\|U x\|_{H_{2}}=\|x\|_{H_{2}}$ for all $x \in \overline{\operatorname{Ran}(|A|)}$ and $U y=0$ for all $y \in \operatorname{Ran}(|A|)^{\perp}$.

Proof. If $x \in H_{1}$, then

$$
\left.\||A| x\|_{H_{2}}^{2}=\langle | A|x,|A| x\rangle_{H_{2}}=\left.\langle x,| A\right|^{*}|A| x\right\rangle_{H_{1}}=\left\langle x, A^{*} A x\right\rangle_{H_{1}}=\langle A x, A x\rangle_{H_{2}}=\|A x\|_{H_{2}}^{2} .
$$

We can define a linear mapping $U: \operatorname{Ran}(|A|) \rightarrow \operatorname{Ran}(A)$ by setting $U(|A| x)=A x$ for $x \in H_{1}$. Since the above formula implies

$$
\|U(|A| x)\|=\|A x\|=\||A| x\| \quad \text { for all }|A| x \in \operatorname{Ran}(|A|)
$$

there exists a unique extension $U: \overline{\operatorname{Ran}(|A|)} \rightarrow \overline{\operatorname{Ran}(A)}$ s.t. $\left\|U_{x}\right\|=\|x\|$ for all $x \in \overline{\operatorname{Ran}(|A|)}$. Finally, since we have the orthogonal decomposition $H_{2}=\overline{\operatorname{Ran}(|A|)} \oplus \operatorname{Ran}(|A|)^{\perp}$, we can set $U y=0$ for all $y \in \operatorname{Ran}(|A|)^{\perp}$.

Theorem (Singular value decomposition of compact operators)

Let H_{1} and H_{2} be real Hilbert spaces and let $A: H_{1} \rightarrow H_{2}$ be a compact operator. Then there exists a (possibly finite) sequence of positive real numbers $\left(\lambda_{n}\right) \subset \mathbb{R}$ with $\lim _{n \rightarrow \infty} \lambda_{n}=0$ and (possibly finite) orthonormal sequences $\left(v_{n}\right) \subset H_{1}$ and $\left(u_{n}\right) \subset H_{2}$ such that

$$
A x=\sum_{n} \lambda_{n}\left\langle x, v_{n}\right\rangle_{H_{1}} u_{n}, \quad x \in H_{1}
$$

Proof. The operator $A^{*} A: H_{1} \rightarrow H_{1}$ is compact and self-adjoint. Let

$$
A^{*} A x=\sum_{n} \lambda_{n}\left\langle x, v_{n}\right\rangle_{H_{1}} v_{n}, \quad x \in H_{1},
$$

be its eigendecomposition. Moreover, let

$$
|A| x=\sum_{n} \sqrt{\lambda_{n}}\left\langle x, v_{n}\right\rangle_{H_{1}} w_{n}, \quad x \in H_{1},
$$

be defined as before. Then using the polar decomposition:

$$
A x=U|A| x=U\left(\sum_{n} \sqrt{\lambda_{n}}\left\langle x, v_{n}\right\rangle_{H_{1}} w_{n}\right)=\sum_{n} \sqrt{\lambda_{n}}\left\langle x, v_{n}\right\rangle_{H_{1}} \underbrace{U\left(w_{n}\right.}_{=: u_{n}}) .
$$

Since U is an isometry in $\operatorname{Ran}(|A|),\left\langle w_{n}, w_{m}\right\rangle_{H_{2}}=\left\langle U\left(w_{n}\right), U\left(w_{m}\right)\right\rangle_{H_{2}}$ (exercise 1). Therefore $\left(u_{n}\right)$ is also an orthonormal sequence.

