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Practical matters

e Monday May 1 (next week) is a public holiday
— no lecture on May 1!

@ We will have a bonus live-coding lecture on Tuesday May 2 about
Computerized Tomography in place of the usual exercise session (this
material will not be essential to the course).

@ The deadline for the second exercise sheet will be moved to Tuesday
May 9. Note that tomorrow's exercise session will happen as planned.



Spectral theory of compact operators



Let E be a (complex) Banach space and A: E — E a bounded linear
operator. The spectrum of operator A is denoted by

o(A) :={\ € C| A — A does not have an inverse}.

Proposition
Let H be a real Hilbert space and A: H — H a bounded linear operator.
Then

sup{[A| : A € o(A)} < [|Al.

Proof. Let || > ||A|l. Then Al — A= A(/ — +A), where ||$A|| < 1. Thus
I — %A is invertible (its inverse can be expressed as a Neumann series), and
therefore the operator A/ — A is always invertible for all |A| > || Al|. O

Lemma
The eigenvalues of a self-adjoint operator A: H — H are real-valued.

Proof. If Ax = Ax, with x # 0, then'
Ax, x) = (Ax, x) = {(x, A*x) = (x, \x) = A(x,x) = A=AeR [

tIf the scalar field of an inner product space is complex, then recall that the inner
product needs to satisfy (x, y) = (y, x).




Lemma
Let H be a real Hilbert space and let A: H — H be a self-adjoint operator.
Then

[All = sup [(Ax,x)|.

lIxll=1

Proof. Let us denote a := sup{|(Ax, x)| : ||x|| = 1}.
“>" By Cauchy-Schwarz, [{Ax, x)| < ||A]| for ||x]| = 1, and thus a < ||A|l.

“<" Using A* = A, we obtain the identity
(Ax+y)sx +y) = (Alx = y),x =)

= {A6x] + (Ax,y) + (Ay, x) + LAysy] — LA x] + (Ax, y) + (Ay, x) —(Aysy)
=4(Ax,y) forall x,y € H.

Let x,y € H be such that ||x|| = 1 = ||y||. Using the inequality |(Av, v)| < al|v||? for all
v € H and the parallelogram rule (exercise 1), we obtain

4(Ax, y) < [(A(x+ ), x + )|+ [(AGx = y),x = 9] < alllx+yIP + lIx = yIP)
= 2a(|IxIP? + ly[1?) = 4.

Let A\ = sign(Ax, y). Then [(Ax, y)| = MAx,y) = (A(Ax),y) < «
= Al = SUP||x||=1 SUP||y||=1 [(Ax, y)| < a. O



If Ais a compact operator, then there exists an element in H which
satisfies the following.

Lemma
Let H be a real Hilbert space and let A: H — H be a compact, self-adjoint
operator. Then

I|All = [(Axo, x0)| for some xp € H, |xo| = 1. (1)

Moreover, xq is an eigenvector of A, Axg = \ox with |Ao| = [|A|l.

Proof. Suppose that A # 0. By the previous lemma,
Al = sup{[(Ax, x)| : [[x|| = 1},

and thus there exists a sequence (x,) C {x € H : ||x|| = 1} such that
[(Axa, xa)| "= |A]l i, (Axn, Xn) "5 o, where Ao € {—||A]|, ||Al|}. Now

n— oo

0 < [|Axn — Aoxal”> = [|Axal” + A3l|xal|> = 200 (AXn, Xn) < A5 + A5 — 220 (Axn, X)) "—5° 0.

By compactness of A, there exists a subsequence (x;) of (x») and a limit xo € H such
that Ax,;, — xo. Since Axy; — Aoxa; — 0, then Ax,, — o, %]l =1, and Axo = Aoxo. [




Theorem (Spectral theorem for compact, self-adjoint operators)

Let H be a real Hilbert space and let A: H— H be a compact, self-adjoint
operator. Then

e each A € o(A) \ {0} is an eigenvalue of A;

@ 0 is the only limit point of o(A), i.e., if there are an infinite number
of eigenvalues (\p,) C R, then lim, A, = 0;

@ the eigenvectors (up) C H form an orthonormal sequence such that

Ax = Z An(X, up)up.

Proof. We have already established that there exists ug € H
s.t. Aupg = Agup, |)\0| = ||A|| and ||UO|| = 1. Define H; := {UO}L. If
y € Hi, then

<Ayv U0> = <.ya AUO) = )‘1<y7 u0> =0,

which means that Aly, : Hi — Hi is a compact, self-adjoint operator.




By (1), there exists u; € Hp such that

Al Nl = [(u1, Aur)]
with Auy = A\juq, where ’)\1’ < ’/\0’ and <UO, U1> =0.

Next, let Ho := {up, u1}*. As before, A|p,: Hy — Hy is a compact,
self-adjoint operator and (1) again implies that there exists uy € Hy such
that Aup = Aaup, where || < |A\1] < |No| and ||uz|| = 1.

Proceeding inductively, we obtain H, := {up, ..., u,,,l}L C H,_1, where
Aln,: Hy — H, is compact and self-adjoint, |A,| = ||Alp, ||,
[An| < [Anz1| <o < | Xo| and Au, = Apup for some u, € Hy, ||un|| = 1.

If dimRan(A) = oo, we claim that |[\,| — 0 as n — oo. Since uy L u;
whenever j # k, we deduce that

NP+ I = Ak = Ajujl* = || Auge — Auj]?.

Note that (AJQ) is convergent as a bounded, monotonic sequence. Since
(uj) is bounded and A is compact, (Auj) contains a convergent
subsequence — and hence it contains a Cauchy subsequence. This implies
that ()\Jz) contains a subsequence which converges to 0. Since ()\12) is a
convergent sequence, it follows that lim; ., A; = 0.



Let M := span{u, | n € N}*. The previous discussion implies that
Alpm = 0. Let Hy :=span{u, | u, € N}. By the orthogonal decomposition
H = M ® H, the orthogonal projection P: H — H,, can be written as

Px = Z(x, upyup, x€H (proof left as an exercise)

and therefore
Ax = APx = A<Z<x, u,,>u,,> = Z<X, un)Aup, = Z An(X, Un)unp,
as desired.

Finally, to see that each A € o(A) \ {0} is an eigenvalue, suppose that
A& {\, | neN}U{0}. Then there exists 6 > 0 such that [A — \,| > ¢ for
allneNand |A| > 0. If @ H— M is an orthogonal projection, then *

1 1
—A) 1y = E - -
(A ) x d N (x, up)up + /\QX, x € H,

O

is bounded by the previous discussion, i.e., A & o(A).



Our goal is to obtain a spectral expansion for all compact operators
A: Hy — H,. To begin with, note that if A: H; — H> is a compact
operator, then A*A: H; — H; is compact and self-adjoint since

(A*AX, yYH, = (Ax, Ay, = (x, A"Ay)p, forall x,y € H.

Note in addition that the eigenvalues of A*A are nonnegative: if
A*Avp = ApVn, ||VallH, =1, then

An = Aallvallfy = (A" Ava, Vi), = [[Avally,

In particular, we can write down the eigendecomposition

A*Ax = Z An<X7 Vn>H1 Vn,

where (v,) C Hj is an orthonormal sequence of eigenvectors.



Lemma

Let Hy and H, be real Hilbert spaces and let A: Hy — H, be a compact
operator. Then there exist orthonormal sequences (v,) C Hy and
(wn) C Ha such that

Av, = J)T,,W,, and A*w, = V)T,,vm (2)

where \1 > Ao > --- > 0 are the nonzero eigenvalues of A*A. Define
|A|l: Hy — H> by setting |Alx =3, V/An(X, Va) H,Wn. Then
|A| is compact and |A|*|A| = A*A.

Proof. Let (v,) C H; denote the orthonormal sequence of eigenfunctions
of A*A, i.e.,
A*Av, = \yv,

and define a second sequence by

Straightforward computations show that (2) holds as well as
(Wn, Wn)H, = 1 and (Wp, Wm)n, = 0 whenever n # m.




Next, let us show that |A|: H; — H> is compact. It follows from the
generalized Pythagorean theorem and Bessel's inequality that

2
H’A’X—Z\/ (X, Vi) Hy Wn Z V An(X, V) Hy W
H, n=m+1 H;
= Z IAnl (X, Vo) iy [ < sup Al - [1xII?
n>m+1

n=m-+1
< sup |Ap| forall ||x|lm < 1.

n>m+1

Thus [[JA] = 371 VAn (s Vi) i Wall < suppsmir VAn = 0 as m — oo.
Since the operators x — (x, vp)p, wp have 1- dlmen5|onal range, they are

compact. Moreover, finite sums Y"1 \/An(, V), Wy of compact
operators are compact and, in consequence, their limiting operator |A| is
compact. (See, e.g., properties of compact operators from the lecture
notes of week 1.)



Finally, we wish to show that |A|*|A] = A*A. It is not difficult to check
that
|Al* = Z V An (-, Wn) H, Vn-

Let x € H;. A direct computation then reveals that

A Alx = \A\*(; Ve vl

:Z \/)\m<Z\/)\7n<X’ Vn>H1Wn7Wm> Vm
m n Ha

= Z V )\m)\n<Xa Vn>H1<Wna Wm>H2 Vm

= Z An(X, Vo) H, Vo = A" AX,

where we used (Wp, W), = 1 and (Wp, Wm)n, = 0 whenever n # m.



Proposition (Polar decomposition)

Let Hy and H, be real Hilbert spaces, A: Hi — H» a compact operator,
and let |A| be defined as before. Then there exists a bounded, linear
operator U: Hy, — H» such that

A= U|A|

where |Ux||n, = ||x||1, for all x € Ran(|A|) and Uy = 0 for all
y € Ran(|A|)*.

Proof. If x € Hy, then
AlxlE, = (A, [AX) s = (A A s = (x, A" Ax) i, = (Ax, Ax)n, = || Ax|[E,-

We can define a linear mapping U: Ran(|A|) — Ran(A) by setting U(|A|x) = Ax for
x € Hi. Since the above formula implies

[U(AR)I = IAx[l = [[[Alx]|  for all [Alx € Ran(|A]),

there exists a unique extension U: Ran(|A|) — Ran(A) s.t. ||Ux]|| = ||x]| for all

x € Ran(]A|). Finally, since we have the orthogonal decomposition
H, = Ran(|A]) ® Ran(]A|)*, we can set Uy = 0 for all y € Ran(]A|)*.



Theorem (Singular value decomposition of compact operators)

Let Hy and H» be real Hilbert spaces and let A: Hy — Hy be a compact
operator. Then there exists a (possibly finite) sequence of positive real
numbers (Ap) C R with limp_,oc A\n = 0 and (possibly finite) orthonormal
sequences (vp) C Hy and (u,) C Ha such that

Ax = Z)\n<x, Vn)H Un, X € Hi.

Proof. The operator A*A: H; — H; is compact and self-adjoint. Let
A*Ax = Z An{X, Vo)t Va, X € Hi,

be its eigendecomposition. Moreover, let

|Alx = Z VAn{X, Vo) Hy Wn,  x € Hi,
be defined as before. Then using the polar decomposition:

Ax = UlAlx = U (Z\ﬁxvnmwﬂ) Z\ﬁxvnmw

=:Up

Since U is an isometry in Ran(|A|), (Wa, Wm)n, = (U(wn), U(wm))n, (exercise 1).
Therefore (u,) is also an orthonormal sequence. O



