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Practical matters

Monday May 1 (next week) is a public holiday
→ no lecture on May 1!

We will have a bonus live-coding lecture on Tuesday May 2 about
Computerized Tomography in place of the usual exercise session (this
material will not be essential to the course).

The deadline for the second exercise sheet will be moved to Tuesday
May 9. Note that tomorrow’s exercise session will happen as planned.



Spectral theory of compact operators



Let E be a (complex) Banach space and A : E → E a bounded linear
operator. The spectrum of operator A is denoted by

σ(A) := {λ ∈ C | λI − A does not have an inverse}.

Proposition

Let H be a real Hilbert space and A : H → H a bounded linear operator.
Then

sup{|λ| : λ ∈ σ(A)} ≤ ∥A∥.

Proof. Let |λ| > ∥A∥. Then λI − A = λ(I − 1
λA), where ∥ 1

λA∥ < 1. Thus
I − 1

λA is invertible (its inverse can be expressed as a Neumann series), and
therefore the operator λI − A is always invertible for all |λ| > ∥A∥.

Lemma

The eigenvalues of a self-adjoint operator A : H → H are real-valued.

Proof. If Ax = λx , with x ̸= 0, then†

λ⟨x , x⟩ = ⟨Ax , x⟩ = ⟨x ,A∗x⟩ = ⟨x , λx⟩ = λ⟨x , x⟩ ⇒ λ = λ ∈ R
†If the scalar field of an inner product space is complex, then recall that the inner

product needs to satisfy ⟨x , y⟩ = ⟨y , x⟩.



Lemma

Let H be a real Hilbert space and let A : H → H be a self-adjoint operator.
Then

∥A∥ = sup
∥x∥=1

|⟨Ax , x⟩|.

Proof. Let us denote α := sup{|⟨Ax , x⟩| : ∥x∥ = 1}.
“≥” By Cauchy–Schwarz, |⟨Ax , x⟩| ≤ ∥A∥ for ∥x∥ = 1, and thus α ≤ ∥A∥.
“≤” Using A∗ = A, we obtain the identity

⟨A(x + y), x + y⟩ − ⟨A(x − y), x − y⟩
=���⟨Ax , x⟩+ ⟨Ax , y⟩+ ⟨Ay , x⟩+���⟨Ay , y⟩ −���⟨Ax , x⟩+ ⟨Ax , y⟩+ ⟨Ay , x⟩ −���⟨Ay , y⟩
= 4⟨Ax , y⟩ for all x , y ∈ H.

Let x , y ∈ H be such that ∥x∥ = 1 = ∥y∥. Using the inequality |⟨Av , v⟩| ≤ α∥v∥2 for all
v ∈ H and the parallelogram rule (exercise 1), we obtain

4⟨Ax , y⟩ ≤ |⟨A(x + y), x + y⟩|+ |⟨A(x − y), x − y⟩| ≤ α(∥x + y∥2 + ∥x − y∥2)

= 2α(∥x∥2 + ∥y∥2) = 4α.

Let λ = sign⟨Ax , y⟩. Then |⟨Ax , y⟩| = λ⟨Ax , y⟩ = ⟨A(λx), y⟩ ≤ α
⇒ ∥A∥ = sup∥x∥=1 sup∥y∥=1 |⟨Ax , y⟩| ≤ α.



If A is a compact operator, then there exists an element in H which
satisfies the following.

Lemma

Let H be a real Hilbert space and let A : H → H be a compact, self-adjoint
operator. Then

∥A∥ = |⟨Ax0, x0⟩| for some x0 ∈ H, ∥x0∥ = 1. (1)

Moreover, x0 is an eigenvector of A, Ax0 = λ0x with |λ0| = ∥A∥.

Proof. Suppose that A ̸= 0. By the previous lemma,

∥A∥ = sup{|⟨Ax , x⟩| : ∥x∥ = 1},

and thus there exists a sequence (xn) ⊂ {x ∈ H : ∥x∥ = 1} such that

|⟨Axn, xn⟩|
n→∞→ ∥A∥, i.e., ⟨Axn, xn⟩

n→∞→ λ0, where λ0 ∈ {−∥A∥, ∥A∥}. Now

0 ≤ ∥Axn − λ0xn∥2 = ∥Axn∥2 + λ2
0∥xn∥2 − 2λ0⟨Axn, xn⟩ ≤ λ2

0 + λ2
0 − 2λ0⟨Axn, xn⟩

n→∞→ 0.

By compactness of A, there exists a subsequence (xnj ) of (xn) and a limit x0 ∈ H such
that Axnj → x0. Since Axnj − λ0xnj → 0, then λxnj → x0, ∥x0∥ = 1, and Ax0 = λ0x0.



Theorem (Spectral theorem for compact, self-adjoint operators)

Let H be a real Hilbert space and let A : H → H be a compact, self-adjoint
operator. Then

each λ ∈ σ(A) \ {0} is an eigenvalue of A;

0 is the only limit point of σ(A), i.e., if there are an infinite number
of eigenvalues (λn) ⊂ R, then limn λn = 0;

the eigenvectors (un) ⊂ H form an orthonormal sequence such that

Ax =
∑
n

λn⟨x , un⟩un.

Proof. We have already established that there exists u0 ∈ H
s.t. Au0 = λ0u0, |λ0| = ∥A∥ and ∥u0∥ = 1. Define H1 := {u0}⊥. If
y ∈ H1, then

⟨Ay , u0⟩ = ⟨y ,Au0⟩ = λ1⟨y , u0⟩ = 0,

which means that A|H1 : H1 → H1 is a compact, self-adjoint operator.



By (1), there exists u1 ∈ H1 such that

∥A|H1∥ = |⟨u1,Au1⟩|

with Au1 = λ1u1, where |λ1| ≤ |λ0| and ⟨u0, u1⟩ = 0.

Next, let H2 := {u0, u1}⊥. As before, A|H2 : H2 → H2 is a compact,
self-adjoint operator and (1) again implies that there exists u2 ∈ H2 such
that Au2 = λ2u2, where |λ2| ≤ |λ1| ≤ |λ0| and ∥u2∥ = 1.

Proceeding inductively, we obtain Hn := {u0, . . . , un−1}⊥ ⊂ Hn−1, where
A|Hn : Hn → Hn is compact and self-adjoint, |λn| = ∥A|Hn∥,
|λn| ≤ |λn−1| ≤ · · · ≤ |λ0| and Aun = λnun for some un ∈ Hn, ∥un∥ = 1.

If dimRan(A) = ∞, we claim that |λn| → 0 as n → ∞. Since uk ⊥ uj
whenever j ̸= k , we deduce that

|λj |2 + |λk |2 = ∥λkuk − λjuj∥2 = ∥Auk − Auj∥2.

Note that (λ2
j ) is convergent as a bounded, monotonic sequence. Since

(uj) is bounded and A is compact, (Auj) contains a convergent
subsequence – and hence it contains a Cauchy subsequence. This implies
that (λ2

j ) contains a subsequence which converges to 0. Since (λ2
j ) is a

convergent sequence, it follows that limj→∞ λj = 0.



Let M := span{un | n ∈ N}⊥. The previous discussion implies that
A|M = 0. Let H∞ := span{un | un ∈ N}. By the orthogonal decomposition
H = M ⊕ H∞, the orthogonal projection P : H → H∞ can be written as

Px =
∑
n

⟨x , un⟩un, x ∈ H (proof left as an exercise)

and therefore

Ax = APx = A

(∑
n

⟨x , un⟩un
)

=
∑
n

⟨x , un⟩Aun =
∑
n

λn⟨x , un⟩un,

as desired.

Finally, to see that each λ ∈ σ(A) \ {0} is an eigenvalue, suppose that
λ ̸∈ {λn | n ∈ N} ∪ {0}. Then there exists δ > 0 such that |λ− λn| > δ for
all n ∈ N and |λ| > δ. If Q : H → M is an orthogonal projection, then ´

(λI − A)−1x =
∑
n

1

λ− λn
⟨x , un⟩un +

1

λ
Qx , x ∈ H,

is bounded by the previous discussion, i.e., λ ̸∈ σ(A).



Our goal is to obtain a spectral expansion for all compact operators
A : H1 → H2. To begin with, note that if A : H1 → H2 is a compact
operator, then A∗A : H1 → H1 is compact and self-adjoint since

⟨A∗Ax , y⟩H1 = ⟨Ax ,Ay⟩H2 = ⟨x ,A∗Ay⟩H1 for all x , y ∈ H1.

Note in addition that the eigenvalues of A∗A are nonnegative: if
A∗Avn = λnvn, ∥vn∥H1 = 1

’
then

λn = λn∥vn∥2H1
= ⟨A∗Avn, vn⟩H1 = ∥Avn∥2H2

≥ 0.

In particular, we can write down the eigendecomposition

A∗Ax =
∑
n

λn⟨x , vn⟩H1vn,

where (vn) ⊂ H1 is an orthonormal sequence of eigenvectors.



Lemma

Let H1 and H2 be real Hilbert spaces and let A : H1 → H2 be a compact
operator. Then there exist orthonormal sequences (vn) ⊂ H1 and
(wn) ⊂ H2 such that

Avn =
√
λnwn and A∗wn =

√
λnvn, (2)

where λ1 ≥ λ2 ≥ · · · > 0 are the nonzero eigenvalues of A∗A. Define
|A| : H1 → H2 by setting |A|x =

∑
n

√
λn⟨x , vn⟩H1wn. Then

|A| is compact and |A|∗|A| = A∗A.

Proof. Let (vn) ⊂ H1 denote the orthonormal sequence of eigenfunctions
of A∗A, i.e.,

A∗Avn = λnvn

and define a second sequence by

wn =
1√
λn

Avn.

Straightforward computations show that (2) holds as well as
⟨wn,wn⟩H2 = 1 and ⟨wn,wm⟩H2 = 0 whenever n ̸= m.



Next, let us show that |A| : H1 → H2 is compact. It follows from the
generalized Pythagorean theorem and Bessel’s inequality that∥∥∥∥|A|x −

m∑
n=1

√
λn⟨x , vn⟩H1wn

∥∥∥∥2
H2

=

∥∥∥∥ ∞∑
n=m+1

√
λn⟨x , vn⟩H1wn

∥∥∥∥2
H2

=
∞∑

n=m+1

|λn||⟨x , vn⟩H1 |
2 ≤ sup

n≥m+1
|λn| · ∥x∥2

≤ sup
n≥m+1

|λn| for all ∥x∥H1 ≤ 1.

Thus ∥|A| −
∑m

n=1

√
λn⟨·, vn⟩H1wn∥ ≤ supn≥m+1

√
λn → 0 as m → ∞.

Since the operators x 7→ ⟨x , vn⟩H1wn have 1-dimensional range, they are
compact. Moreover, finite sums

∑m
n=1

√
λn⟨·, vn⟩H1wn of compact

operators are compact and, in consequence, their limiting operator |A| is
compact. (See, e.g., properties of compact operators from the lecture
notes of week 1.)



Finally, we wish to show that |A|∗|A| = A∗A. It is not difficult to check
that

|A|∗ =
∑
n

√
λn⟨·,wn⟩H2vn.

Let x ∈ H1. A direct computation then reveals that

|A|∗|A|x = |A|∗
(∑

n

√
λn⟨x , vn⟩H1wn

)
=

∑
m

√
λm

〈∑
n

√
λn⟨x , vn⟩H1wn,wm

〉
H2

vm

=
∑
m,n

√
λmλn⟨x , vn⟩H1⟨wn,wm⟩H2vm

=
∑
n

λn⟨x , vn⟩H1vn = A∗Ax ,

where we used ⟨wn,wn⟩H2 = 1 and ⟨wn,wm⟩H2 = 0 whenever n ̸= m.



Proposition (Polar decomposition)

Let H1 and H2 be real Hilbert spaces, A : H1 → H2 a compact operator,
and let |A| be defined as before. Then there exists a bounded, linear
operator U : H2 → H2 such that

A = U|A|,

where ∥Ux∥H2 = ∥x∥H2 for all x ∈ Ran(|A|) and Uy = 0 for all
y ∈ Ran(|A|)⊥.

Proof. If x ∈ H1, then

∥|A|x∥2H2
= ⟨|A|x , |A|x⟩H2 = ⟨x , |A|∗|A|x⟩H1 = ⟨x ,A∗Ax⟩H1 = ⟨Ax ,Ax⟩H2 = ∥Ax∥2H2

.

We can define a linear mapping U : Ran(|A|) → Ran(A) by setting U(|A|x) = Ax for
x ∈ H1. Since the above formula implies

∥U(|A|x)∥ = ∥Ax∥ = ∥|A|x∥ for all |A|x ∈ Ran(|A|),

there exists a unique extension U : Ran(|A|) → Ran(A) s.t. ∥Ux∥ = ∥x∥ for all
x ∈ Ran(|A|). Finally, since we have the orthogonal decomposition
H2 = Ran(|A|)⊕ Ran(|A|)⊥, we can set Uy = 0 for all y ∈ Ran(|A|)⊥.



Theorem (Singular value decomposition of compact operators)

Let H1 and H2 be real Hilbert spaces and let A : H1 → H2 be a compact
operator. Then there exists a (possibly finite) sequence of positive real
numbers (λn) ⊂ R with limn→∞ λn = 0 and (possibly finite) orthonormal
sequences (vn) ⊂ H1 and (un) ⊂ H2 such that

Ax =
∑
n

λn⟨x , vn⟩H1un, x ∈ H1.

Proof. The operator A∗A : H1 → H1 is compact and self-adjoint. Let

A∗Ax =
∑
n

λn⟨x , vn⟩H1vn, x ∈ H1,

be its eigendecomposition. Moreover, let

|A|x =
∑
n

√
λn⟨x , vn⟩H1wn, x ∈ H1,

be defined as before. Then using the polar decomposition:

Ax = U|A|x = U

(∑
n

√
λn⟨x , vn⟩H1wn

)
=

∑
n

√
λn⟨x , vn⟩H1U(wn)︸ ︷︷ ︸

=:un

.

Since U is an isometry in Ran(|A|), ⟨wn,wm⟩H2 = ⟨U(wn),U(wm)⟩H2 (exercise 1).
Therefore (un) is also an orthonormal sequence.


