Inverse Problems

Sommersemester 2023

Vesa Kaarnioja vesa.kaarnioja@fu-berlin.de

FU Berlin, FB Mathematik und Informatik

Second lecture, April 24, 2023

- Monday May 1 (next week) is a public holiday
 → no lecture on May 1!
- We will have a bonus live-coding lecture on **Tuesday May 2** about Computerized Tomography in place of the usual exercise session (this material will not be essential to the course).
- The deadline for the second exercise sheet will be moved to **Tuesday** May 9. Note that tomorrow's exercise session will happen as planned.

Spectral theory of compact operators

Let *E* be a (complex) Banach space and $A: E \rightarrow E$ a bounded linear operator. The *spectrum* of operator *A* is denoted by

 $\sigma(A) := \{ \lambda \in \mathbb{C} \mid \lambda I - A \text{ does not have an inverse} \}.$

Proposition

Let H be a real Hilbert space and A: $H \rightarrow H$ a bounded linear operator. Then

$$\sup\{|\lambda|:\lambda\in\sigma(A)\}\leq \|A\|.$$

Proof. Let $|\lambda| > ||A||$. Then $\lambda I - A = \lambda (I - \frac{1}{\lambda}A)$, where $||\frac{1}{\lambda}A|| < 1$. Thus $I - \frac{1}{\lambda}A$ is invertible (its inverse can be expressed as a Neumann series), and therefore the operator $\lambda I - A$ is always invertible for all $|\lambda| > ||A||$.

Lemma

The eigenvalues of a self-adjoint operator $A: H \rightarrow H$ are real-valued.

Proof. If $Ax = \lambda x$, with $x \neq 0$, then[†]

$$\overline{\lambda\langle x,x\rangle} = \langle Ax,x\rangle = \langle x,A^*x\rangle = \langle x,\lambda x\rangle = \overline{\lambda}\langle x,x\rangle \quad \Rightarrow \quad \lambda = \overline{\lambda} \in \mathbb{R} \quad \Box$$

[†]If the scalar field of an inner product space is complex, then recall that the inner product needs to satisfy $\langle x, y \rangle = \overline{\langle y, x \rangle}$.

Lemma

Let H be a real Hilbert space and let $A \colon H \to H$ be a self-adjoint operator. Then

$$||A|| = \sup_{||x||=1} |\langle Ax, x \rangle|.$$

Proof. Let us denote $\alpha := \sup\{|\langle Ax, x \rangle| : ||x|| = 1\}$. " \geq " By Cauchy–Schwarz, $|\langle Ax, x \rangle| \le ||A||$ for ||x|| = 1, and thus $\alpha \le ||A||$. " \le " Using $A^* = A$, we obtain the identity

$$\begin{array}{l} \langle A(x+y), x+y \rangle - \langle A(x-y), x-y \rangle \\ = \underline{\langle} Ax, x \overline{\rangle} + \langle Ax, y \rangle + \langle Ay, x \rangle + \underline{\langle} Ay, y \overline{\rangle} - \underline{\langle} Ax, x \overline{\rangle} + \langle Ax, y \rangle + \langle Ay, x \rangle - \underline{\langle} Ay, y \overline{\rangle} \\ = 4 \langle Ax, y \rangle \quad \text{for all } x, y \in H. \end{array}$$

Let $x, y \in H$ be such that ||x|| = 1 = ||y||. Using the inequality $|\langle Av, v \rangle| \le \alpha ||v||^2$ for all $v \in H$ and the parallelogram rule (exercise 1), we obtain

$$\begin{aligned} 4\langle Ax, y \rangle &\leq |\langle A(x+y), x+y \rangle| + |\langle A(x-y), x-y \rangle| \leq \alpha (||x+y||^2 + ||x-y||^2) \\ &= 2\alpha (||x||^2 + ||y||^2) = 4\alpha. \end{aligned}$$

Let $\lambda = \operatorname{sign}\langle Ax, y \rangle$. Then $|\langle Ax, y \rangle| = \lambda \langle Ax, y \rangle = \langle A(\lambda x), y \rangle \le \alpha$ $\Rightarrow ||A|| = \operatorname{sup}_{||x||=1} \operatorname{sup}_{||y||=1} |\langle Ax, y \rangle| \le \alpha$. If A is a compact operator, then there exists an element in H which satisfies the following.

Lemma

Let H be a real Hilbert space and let A: $H \rightarrow H$ be a compact, self-adjoint operator. Then

$$||A|| = |\langle Ax_0, x_0 \rangle|$$
 for some $x_0 \in H$, $||x_0|| = 1$. (1)

Moreover, x_0 is an eigenvector of A, $Ax_0 = \lambda_0 x$ with $|\lambda_0| = ||A||$.

Proof. Suppose that $A \neq 0$. By the previous lemma,

$$\|A\| = \sup\{|\langle Ax, x\rangle| : \|x\| = 1\},$$

and thus there exists a sequence $(x_n) \subset \{x \in H : ||x|| = 1\}$ such that $|\langle Ax_n, x_n \rangle| \xrightarrow{n \to \infty} ||A||$, i.e., $\langle Ax_n, x_n \rangle \xrightarrow{n \to \infty} \lambda_0$, where $\lambda_0 \in \{-||A||, ||A||\}$. Now $0 \le ||Ax_n - \lambda_0 x_n||^2 = ||Ax_n||^2 + \lambda_0^2 ||x_n||^2 - 2\lambda_0 \langle Ax_n, x_n \rangle \le \lambda_0^2 + \lambda_0^2 - 2\lambda_0 \langle Ax_n, x_n \rangle \xrightarrow{n \to \infty} 0$.

By compactness of A, there exists a subsequence (x_{n_j}) of (x_n) and a limit $x_0 \in H$ such that $Ax_{n_j} \to x_0$. Since $Ax_{n_j} - \lambda_0 x_{n_j} \to 0$, then $\lambda x_{n_j} \to x_0$, $||x_0|| = 1$, and $Ax_0 = \lambda_0 x_0$. \Box

Theorem (Spectral theorem for compact, self-adjoint operators)

Let H be a real Hilbert space and let A: $H \rightarrow H$ be a compact, self-adjoint operator. Then

- each $\lambda \in \sigma(A) \setminus \{0\}$ is an eigenvalue of A;
- 0 is the only limit point of σ(A), i.e., if there are an infinite number of eigenvalues (λ_n) ⊂ ℝ, then lim_n λ_n = 0;
- the eigenvectors $(u_n) \subset H$ form an orthonormal sequence such that

$$Ax = \sum_{n} \lambda_n \langle x, u_n \rangle u_n.$$

Proof. We have already established that there exists $u_0 \in H$ s.t. $Au_0 = \lambda_0 u_0$, $|\lambda_0| = ||A||$ and $||u_0|| = 1$. Define $H_1 := \{u_0\}^{\perp}$. If $y \in H_1$, then

$$\langle Ay, u_0 \rangle = \langle y, Au_0 \rangle = \lambda_1 \langle y, u_0 \rangle = 0,$$

which means that $A|_{H_1}: H_1 \rightarrow H_1$ is a compact, self-adjoint operator.

By (1), there exists $u_1 \in H_1$ such that

 $\|A|_{H_1}\|=|\langle u_1,Au_1\rangle|$

with $Au_1 = \lambda_1 u_1$, where $|\lambda_1| \leq |\lambda_0|$ and $\langle u_0, u_1 \rangle = 0$.

Next, let $H_2 := \{u_0, u_1\}^{\perp}$. As before, $A|_{H_2} : H_2 \to H_2$ is a compact, self-adjoint operator and (1) again implies that there exists $u_2 \in H_2$ such that $Au_2 = \lambda_2 u_2$, where $|\lambda_2| \le |\lambda_1| \le |\lambda_0|$ and $||u_2|| = 1$.

Proceeding inductively, we obtain $H_n := \{u_0, \ldots, u_{n-1}\}^{\perp} \subset H_{n-1}$, where $A|_{H_n} : H_n \to H_n$ is compact and self-adjoint, $|\lambda_n| = ||A|_{H_n}||$, $|\lambda_n| \le |\lambda_{n-1}| \le \cdots \le |\lambda_0|$ and $Au_n = \lambda_n u_n$ for some $u_n \in H_n$, $||u_n|| = 1$. If dim $\operatorname{Ran}(A) = \infty$, we claim that $|\lambda_n| \to 0$ as $n \to \infty$. Since $u_k \perp u_j$ whenever $j \ne k$, we deduce that

$$|\lambda_j|^2 + |\lambda_k|^2 = \|\lambda_k u_k - \lambda_j u_j\|^2 = \|Au_k - Au_j\|^2.$$

Note that (λ_j^2) is convergent as a bounded, monotonic sequence. Since (u_j) is bounded and A is compact, (Au_j) contains a convergent subsequence – and hence it contains a Cauchy subsequence. This implies that (λ_j^2) contains a subsequence which converges to 0. Since (λ_j^2) is a convergent sequence, it follows that $\lim_{j\to\infty} \lambda_j = 0$.

Let $M := \operatorname{span}\{u_n \mid n \in \mathbb{N}\}^{\perp}$. The previous discussion implies that $A|_M = 0$. Let $H_{\infty} := \operatorname{span}\{u_n \mid u_n \in \mathbb{N}\}$. By the orthogonal decomposition $H = M \oplus H_{\infty}$, the orthogonal projection $P \colon H \to H_{\infty}$ can be written as

$$Px = \sum_{n} \langle x, u_n \rangle u_n, \quad x \in H \qquad (\text{proof left as an exercise})$$

and therefore

$$Ax = APx = A\left(\sum_{n} \langle x, u_n \rangle u_n\right) = \sum_{n} \langle x, u_n \rangle Au_n = \sum_{n} \lambda_n \langle x, u_n \rangle u_n,$$

as desired.

Finally, to see that each $\lambda \in \sigma(A) \setminus \{0\}$ is an eigenvalue, suppose that $\lambda \notin \overline{\{\lambda_n \mid n \in \mathbb{N}\}} \cup \{0\}$. Then there exists $\delta > 0$ such that $|\lambda - \lambda_n| > \delta$ for all $n \in \mathbb{N}$ and $|\lambda| > \delta$. If $Q: H \to M$ is an orthogonal projection, then '

$$(\lambda I - A)^{-1}x = \sum_{n} \frac{1}{\lambda - \lambda_n} \langle x, u_n \rangle u_n + \frac{1}{\lambda} Q x, \quad x \in H,$$

is bounded by the previous discussion, i.e., $\lambda \not\in \sigma(A)$.

Our goal is to obtain a spectral expansion for all compact operators $A: H_1 \rightarrow H_2$. To begin with, note that if $A: H_1 \rightarrow H_2$ is a compact operator, then $A^*A: H_1 \rightarrow H_1$ is compact and self-adjoint since

$$\langle A^*Ax,y
angle_{H_1}=\langle Ax,Ay
angle_{H_2}=\langle x,A^*Ay
angle_{H_1} \ \ \, ext{for all}\ \ \, x,y\in H_1.$$

Note in addition that the eigenvalues of A^*A are nonnegative: if $A^*Av_n = \lambda_n v_n$, $\|v_n\|_{H_1} = 1$, then

$$\lambda_n = \lambda_n \|\mathbf{v}_n\|_{H_1}^2 = \langle A^* A \mathbf{v}_n, \mathbf{v}_n \rangle_{H_1} = \|A \mathbf{v}_n\|_{H_2}^2 \ge 0.$$

In particular, we can write down the eigendecomposition

$$A^*Ax = \sum_n \lambda_n \langle x, v_n \rangle_{H_1} v_n,$$

where $(v_n) \subset H_1$ is an orthonormal sequence of eigenvectors.

Lemma

Let H_1 and H_2 be real Hilbert spaces and let $A: H_1 \to H_2$ be a compact operator. Then there exist orthonormal sequences $(v_n) \subset H_1$ and $(w_n) \subset H_2$ such that

$$Av_n = \sqrt{\lambda_n} w_n$$
 and $A^* w_n = \sqrt{\lambda_n} v_n,$ (2)

where $\lambda_1 \ge \lambda_2 \ge \cdots > 0$ are the nonzero eigenvalues of A^*A . Define $|A|: H_1 \to H_2$ by setting $|A|x = \sum_n \sqrt{\lambda_n} \langle x, v_n \rangle_{H_1} w_n$. Then |A| is compact and $|A|^*|A| = A^*A$.

Proof. Let $(v_n) \subset H_1$ denote the orthonormal sequence of eigenfunctions of A^*A , i.e.,

$$A^*Av_n=\lambda_nv_n$$

and define a second sequence by

$$w_n=rac{1}{\sqrt{\lambda_n}}Av_n.$$

Straightforward computations show that (2) holds as well as $\langle w_n, w_n \rangle_{H_2} = 1$ and $\langle w_n, w_m \rangle_{H_2} = 0$ whenever $n \neq m$.

Next, let us show that $|A|: H_1 \rightarrow H_2$ is compact. It follows from the generalized Pythagorean theorem and Bessel's inequality that

$$\begin{split} \left\| |A|x - \sum_{n=1}^{m} \sqrt{\lambda_n} \langle x, v_n \rangle_{H_1} w_n \right\|_{H_2}^2 &= \left\| \sum_{n=m+1}^{\infty} \sqrt{\lambda_n} \langle x, v_n \rangle_{H_1} w_n \right\|_{H_2}^2 \\ &= \sum_{n=m+1}^{\infty} |\lambda_n| |\langle x, v_n \rangle_{H_1}|^2 \le \sup_{n \ge m+1} |\lambda_n| \cdot \|x\|^2 \\ &\le \sup_{n \ge m+1} |\lambda_n| \quad \text{for all } \|x\|_{H_1} \le 1. \end{split}$$

Thus $|||A| - \sum_{n=1}^{m} \sqrt{\lambda_n} \langle \cdot, v_n \rangle_{H^1} w_n|| \leq \sup_{n \geq m+1} \sqrt{\lambda_n} \to 0$ as $m \to \infty$. Since the operators $x \mapsto \langle x, v_n \rangle_{H_1} w_n$ have 1-dimensional range, they are compact. Moreover, finite sums $\sum_{n=1}^{m} \sqrt{\lambda_n} \langle \cdot, v_n \rangle_{H_1} w_n$ of compact operators are compact and, in consequence, their limiting operator |A| is compact. (See, e.g., properties of compact operators from the lecture notes of week 1.) Finally, we wish to show that $|A|^*|A| = A^*A$. It is not difficult to check that

$$|A|^* = \sum_n \sqrt{\lambda_n} \langle \cdot, w_n \rangle_{H_2} v_n.$$

Let $x \in H_1$. A direct computation then reveals that

$$|A|^*|A|x = |A|^* \left(\sum_n \sqrt{\lambda_n} \langle x, v_n \rangle_{H_1} w_n\right)$$

= $\sum_m \sqrt{\lambda_m} \left\langle \sum_n \sqrt{\lambda_n} \langle x, v_n \rangle_{H_1} w_n, w_m \right\rangle_{H_2} v_m$
= $\sum_{m,n} \sqrt{\lambda_m \lambda_n} \langle x, v_n \rangle_{H_1} \langle w_n, w_m \rangle_{H_2} v_m$
= $\sum_n \lambda_n \langle x, v_n \rangle_{H_1} v_n = A^* A x,$

where we used $\langle w_n, w_n \rangle_{H_2} = 1$ and $\langle w_n, w_m \rangle_{H_2} = 0$ whenever $n \neq m$.

Proposition (Polar decomposition)

Let H_1 and H_2 be real Hilbert spaces, $A: H_1 \rightarrow H_2$ a compact operator, and let |A| be defined as before. Then there exists a bounded, linear operator $U: H_2 \rightarrow H_2$ such that

$$A = U|A|,$$

where $||Ux||_{H_2} = ||x||_{H_2}$ for all $x \in \operatorname{Ran}(|A|)$ and Uy = 0 for all $y \in \operatorname{Ran}(|A|)^{\perp}$.

Proof. If $x \in H_1$, then

$$|||A|x||_{H_{2}}^{2} = \langle |A|x, |A|x\rangle_{H_{2}} = \langle x, |A|^{*}|A|x\rangle_{H_{1}} = \langle x, A^{*}Ax\rangle_{H_{1}} = \langle Ax, Ax\rangle_{H_{2}} = ||Ax||_{H_{2}}^{2}.$$

We can define a linear mapping $U: \operatorname{Ran}(|A|) \to \operatorname{Ran}(A)$ by setting U(|A|x) = Ax for $x \in H_1$. Since the above formula implies

$$||U(|A|x)|| = ||Ax|| = |||A|x||$$
 for all $|A|x \in \text{Ran}(|A|)$,

there exists a unique extension $U: \overline{\operatorname{Ran}(|A|)} \to \overline{\operatorname{Ran}(A)}$ s.t. ||Ux|| = ||x|| for all $x \in \overline{\operatorname{Ran}(|A|)}$. Finally, since we have the orthogonal decomposition $H_2 = \overline{\operatorname{Ran}(|A|)} \oplus \operatorname{Ran}(|A|)^{\perp}$, we can set Uy = 0 for all $y \in \operatorname{Ran}(|A|)^{\perp}$.

Theorem (Singular value decomposition of compact operators)

Let H_1 and H_2 be real Hilbert spaces and let $A: H_1 \to H_2$ be a compact operator. Then there exists a (possibly finite) sequence of positive real numbers $(\lambda_n) \subset \mathbb{R}$ with $\lim_{n\to\infty} \lambda_n = 0$ and (possibly finite) orthonormal sequences $(v_n) \subset H_1$ and $(u_n) \subset H_2$ such that

$$Ax = \sum_{n} \lambda_n \langle x, v_n \rangle_{H_1} u_n, \quad x \in H_1.$$

Proof. The operator $A^*A: H_1 \rightarrow H_1$ is compact and self-adjoint. Let

$$A^*Ax = \sum_n \lambda_n \langle x, v_n \rangle_{H_1} v_n, \quad x \in H_1,$$

be its eigendecomposition. Moreover, let

$$|A|x = \sum_{n} \sqrt{\lambda_n} \langle x, v_n \rangle_{H_1} w_n, \quad x \in H_1,$$

be defined as before. Then using the polar decomposition:

$$Ax = U|A|x = U\left(\sum_{n} \sqrt{\lambda_{n}} \langle x, v_{n} \rangle_{H_{1}} w_{n}\right) = \sum_{n} \sqrt{\lambda_{n}} \langle x, v_{n} \rangle_{H_{1}} \underbrace{U(w_{n})}_{=:w_{n}}$$

Since U is an isometry in $\overline{\text{Ran}(|A|)}$, $\langle w_n, w_m \rangle_{H_2} = \langle U(w_n), U(w_m) \rangle_{H_2}$ (exercise 1). Therefore (u_n) is also an orthonormal sequence.