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Fredholm equation and its solvability



Separable Hilbert space

A Hilbert space is said to be separable if (and only if) there exists a
countable orthonormal basis {ψj}∞j=1 of H with respect to the inner
product ⟨·, ·⟩H , that is,

⟨ψj , ψk⟩H = δj ,k and

∥∥∥∥f − ℓ∑
j=1

⟨f , ψj⟩Hψj

∥∥∥∥
H

ℓ→∞−−−→ 0 for all f ∈ H.

This last condition is usually written as

f =
∞∑
j=1

⟨f , ψj⟩Hψj .

Note that
∑ℓ

j=1⟨f , ψj⟩Hψj is precisely the orthogonal projection onto the
subspace spanned by ψ1, . . . , ψℓ.



Fredholm equation

Let us formalize the problem that we will concentrate on during the first
part of the course.

Let H1 and H2 be separable real Hilbert spaces and let A : H1 → H2 be a
compact linear operator. We are interested in finding x ∈ H1 such that

y = Ax ,

where y ∈ H2 is given. Recall that compact operators are the closure of
finite-dimensional operators (loosely speaking: matrices) in the operator
topology.

Examples:

H1 = H2 = L2(a, b).

H1 = Rn, H2 = Rm, and A ∈ Rm×n.



Singular value decomposition of a compact operator

Let us assume that H1 and H2 are separable real Hilbert spaces and let
A : H1 → H2 be a compact linear operator.

Then there exist (possibly countably infinite) orthonormal sets of vectors
{vn} ⊂ H1 and {un} ⊂ H2, and a sequence of positive numbers
λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ 0 with limn→∞ λn = 0 in the countably infinite case
such that

Ax =
∑
n

λn⟨x , vn⟩un for all x ∈ H1. (1)

In particular, since H1 and H2 are separable, we have

Ran(A) = span{un} and (Ker(A))⊥ = span{vn}.

The system (λn, vn, un) is called a singular system of A, and (1) is a
singular value decomposition (SVD) of A.



Singular value decomposition of matrices: H1 = Rn and
H2 = Rm

Let H1 = Rn and H2 = Rm, meaning that

y = Ax

is a matrix equation with A ∈ Rm×n, x ∈ Rn, and y ∈ Rm.

Since this operator has finite rank (rank(A) := dimRan(A) <∞), we have

Ax =

p∑
j=1

λj(x
Tvj)uj , p := rank(A) ≤ min{n,m},

where {vj}pj=1 ⊂ Rn and {uj}pj=1 ⊂ Rm are sets of orthonormal vectors

and {λj}pj=1 are positive numbers such that λj ≥ λj+1.



It is possible to complete the sequences of (orthonormal) singular vectors
{vj}pj=1 ⊂ Rn and {uj}pj=1 ⊂ Rm with complementary orthonormal vectors
{vj}nj=p+1 and {uj}mj=p+1 such that {vj}nj=1 forms an orthonormal basis for
Rn and {uj}mj=1 forms an orthonormal basis for Rm. This can be done,
e.g., using the Gram–Schmidt process.

Define the matrices

V = [v1, . . . , vn] ∈ Rn×n,

U = [u1, . . . , um] ∈ Rm×m.

Due to the orthonormality of {vj} and {uj}, the matrices V and U are
orthogonal:

VTV = VVT = I and UTU = UUT = I .



Next, we define the matrix Λ ∈ Rm×n as follows:

Λ =

 λ1
. . . Om×(n−m)

λm

 if m < n,

Λ =


λ1

. . .

λn
O(m−n)×n

 if m > n,

and Λ = diag(λ1, . . . , λm) if m = n.

It is simple to check that

Ax =

p∑
j=1

λjujv
T
j x = UΛVTx for all x ∈ Rn,

which yields the matrix singular value decomposition (SVD)

A = UΛVT.

In Python: numpy.linalg.svd. In MATLAB: svd.



Note that in the matrix SVD, the singular values {λj}
min{m,n}
j=1 are

non-negative and

Ran(A) = span{uj | 1 ≤ j ≤ p},
Ker(A) = span{vj | p + 1 ≤ j ≤ n},
(Ran(A))⊥ = span{uj | p + 1 ≤ j ≤ m},
(Ker(A))⊥ = span{vj | 1 ≤ j ≤ p},

where p = rank(A) = max1≤k≤min{m,n}{k | λk > 0}.



Solvability of y = Ax

Let us assume that H1 and H2 are separable real Hilbert spaces and let
A : H1 → H2 be a compact linear operator. Let P : H2 → Ran(A) be an
orthogonal projection. This can be represented using the singular system
of A as

Py =
∑
n

⟨y , un⟩un.

Theorem

Let A : H1 → H2 be a compact operator with the singular system
(λn, vn, un). The equation y = Ax has a solution iff

y = Py and
∑
n

1

λ2n
|⟨y , un⟩|2 <∞︸ ︷︷ ︸

“Picard criterion”

.

In this case, the solution is of the form

x = x0 +
∑
n

1

λn
⟨y , un⟩vn for arbitrary x0 ∈ Ker(A).



Proof. “⇒” Suppose that y = Ax has a solution x ∈ H1. This implies
that y ∈ Ran(A) (thus y = Py) and, moreover,

⟨y , uj⟩ = ⟨Ax , uj⟩ = ⟨x ,A∗uj⟩ = λj⟨x , vj⟩

⇒
∑
n

1

λ2n
|⟨y , un⟩|2 =

∑
n

|⟨x , vn⟩|2
Bessel inequ.

≤ ∥x∥2 <∞.

“⇐” Next, suppose that y = Py and the Picard criterion hold and define
x := x0 +

∑
n λ

−1
n ⟨y , un⟩vn, where x0 ∈ Ker(A) is arbitrary. We obtain

Ax = Ax0 +
∑
n

1

λn
⟨y , un⟩Avn =

∑
n

⟨y , un⟩un = Py = y .

Remark. In the above proof, it is helpful to note that if A has the SVD

Ax =
∑
n

λn⟨x , vn⟩un,

then its adjoint A∗ has the SVD

A∗y =
∑
n

λn⟨y , un⟩vn.



Note that for any x ∈ H1, we have

∥Ax − y∥2 = ∥Ax − Py∥2 + ∥(I − P)y∥2 ≥ ∥(I − P)y∥2.

Hence, if y has a nonzero component in the subspace orthogonal to the
range of A (which may happen if y is contaminated by noise), the
equation Ax = y cannot be satisfied exactly. Thus, the best we can do is
to solve the projected equation

Ax = PAx = Py .

However, there is in general no guarantee that the Picard criterion∑
n

1

λ2n
|⟨Py , un⟩|2 <∞

is satisfied for a general y ∈ H2 if rank(A) = dimRan(A) = ∞.



Truncated singular value decomposition (TSVD)



To recap: the best we can do is to solve the projected equation

Ax = Py .

However, the solution exists iff the very restrictive Picard criterion holds.

We begin by considering one of the simplest regularization techniques for
linear inverse problems. By restricting the range of P onto a
finite-dimensional subspace of the range of A, we obtain a well-defined
approximation to the above problem.



Truncated singular value decomposition (TSVD)

Let us define a family of finite-dimensional orthogonal projections by

Pk : H2 → span{u1, . . . , uk}, y 7→
k∑

n=1

⟨y , un⟩un.

By the orthogonality of {un},

P(Pky) =
∑
n

⟨Pky , un⟩un =
k∑

n=1

⟨y , un⟩un = Pky

and ∑
n

1

λ2n
|⟨Pky , un⟩|2 =

k∑
n=1

1

λ2n
|⟨y , un⟩|2 <∞.

Note that k ≤ rank(A) if rank(A) <∞.



It follows that the problem

Ax = Pky (2)

is always solvable. Taking on both sides the inner product with un, we find
that

λn⟨x , vn⟩ =

{
⟨y , un⟩, 1 ≤ n ≤ k

0, n > k.

Hence the solutions to (2) are given by

xk = x0 +
∑
n

1

λn
⟨Pky , un⟩vn = x0 +

k∑
n=1

1

λn
⟨y , un⟩vn ∈ H1

for any x0 ∈ Ker(A). Observe that since for increasing k ,

∥Axk − Py∥2 = ∥(P − Pk)y∥2
k→∞−−−→ 0,

the residual of the projected equation can be made arbitrarily small.



Finally, to remove the ambiguity of the sought solution due to the possible
noninjectivity of A, we select x0 = 0. This choice minimizes the norm of
xk since, by orthogonality,

∥xk∥2 = ∥x0∥2 +
k∑

n=1

1

λ2n
|⟨y , un⟩|2.



Definition
Let H1 and H2 be separable real Hilbert spaces and let A : H1 → H2 be a
compact linear operator with a singular system (λn, vn, un). By the
truncated SVD approximation (TSVD) of the problem Ax = y , we mean
the problem of finding x ∈ H1 such that

Ax = Pky , x ⊥ Ker(A)

for some k ≥ 1.

Theorem

The solution to the TSVD problem has a unique solution xk , called the
truncated SVD (TSVD) solution, given by

xk =
k∑

n=1

1

λn
⟨y , un⟩vn.

The TSVD solution satisfies

∥Axk − y∥2 = ∥(I − P)y∥2 + ∥(P − Pk)y∥2
k→∞−−−→ ∥(I − P)y∥2.



Truncated SVD for a matrix A ∈ Rm×n

The truncated SVD solution, i.e., solution of

Ax = Pky and x ⊥ Ker(A), 1 ≤ k ≤ p := rank(A),

where Pk : Rm → span{u1, . . . , uk} is an orthogonal projection, is given by

xk =
k∑

j=1

1

λj
⟨y , uj⟩vj =

k∑
j=1

1

λj
vj(u

T
j y) = VΛ†

kU
Ty ,

where A has the SVD A = UΛVT and we define

Λ†
k =



1/λ1 0 · · · 0 · · · 0

0 1/λ2

...
...

. . .

1/λk

0
...

. . .
...

0 · · · · · · 0


∈ Rn×m,

where λ1 ≥ · · · ≥ λp > 0 are the singular values of A (i.e., diagonal of Λ).



Moore–Penrose pseudoinverse of matrices

For the largest possible cut-off k = p = rank(A), the matrix

A† := A†
p = VΛ†

pU
T =: VΛ†UT

is called the Moore–Penrose pseudoinverse. It follows from the above that
x† = A†y is the solution of the projected (matrix) equation

Ax = Py ,

where P : Rm → Ran(A) is the orthogonal projection.

The solution x† = A†y is called the minimum norm solution of the
problem y = Ax since

∥A†y∥ = min{∥x∥ : ∥Ax − y∥ = ∥(I − P)y∥},

where P is the projection onto the range of A. The minimum norm
solution is the solution that minimizes the residual error and has the
minimum norm.



Since the smallest singular value λp is extremely small in inverse problems,
the use of the pseudoinverse is usually very sensitive to inaccuracies in the
data y .

Spectral regularization using TSVD, i.e., discarding singular values below a
certain threshold from the forward model, is a simple and popular
technique used to render linear problems less ill-posed while improving the
noise robustness of the numerical inversion procedure.

However, obtaining the singular values and vectors for large system
matrices is usually very slow.



Numerical experiment: TSVD for X-ray tomography

Let us consider the inverse problem of recovering the attenuation
coefficient (density) of an object given a set of X-ray measurements.
Recall from last week that the mathematical model can be expressed as

y = Ax ,

where y ∈ RQ denotes the (noisy) measurements for Q X-rays, A ∈ RQ×n2

is the projection matrix subject to an n × n pixel discretization of the
computational domain, and x ∈ Rn2 denotes the (piecewise constant)
discretization of the unknown attenuation inside the object of interest.

The data y can be reshaped into an n × n array, which is a graphical
representation of the X-ray measurements (sinogram). The unknown can
be reshaped into an n × n image of the density of the imaged object.



Let us use TSVD to solve this inverse problem for real-life measurement
data. We use the FIPS open dataset of carved cheese available at
https://doi.org/10.5281/zenodo.1254210

The files DataFull 128x15.mat and DataLimited 128x15.mat contain
sparse angle and limited angle tomography measurements, respectively.
The data has been collected using 15 projections spanning either the full
360◦ circle in the first dataset, and 15 projections spanning a limited 90◦

angle of view in the second dataset. The computational domain is a
128× 128 pixel grid in both cases. Each file contains a projection matrix A

and a sinogram measurement matrix m.

By defining y = m.reshape((m.size,1)) (in MATLAB: y = m(:)), the
unknown x can be solved from the linear equation

y = Ax.

The reconstruction is the image x.reshape((128,128)) (in MATLAB:
reshape(x,128,128)).

See the files tomo tsvd.py / tomo tsvd.m on the course webpage!

https://doi.org/10.5281/zenodo.1254210


TSVD for sparse angle tomography data
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Left: the actual object. Middle: sinogram data for sparse angle tomography. Right: näıve
reconstruction without any regularization.
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TSVD reconstructions with spectral cut-off k = 10 (left), k = 100 (middle), and k = 1000
(right).



TSVD for limited angle tomography data

2 4 6 8 10 12 14

100

200

300

400

500

600

700

800

900

20 40 60 80 100 120

20

40

60

80

100

120

Left: the actual object. Middle: sinogram data for limited angle tomography. Right: näıve
reconstruction without any regularization.
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TSVD reconstructions with spectral cut-off k = 10 (left), k = 100 (middle), and k = 1000
(right).



In summary (matrix case H1 = Rn, H2 = Rm): Let the SVD of matrix
A ∈ Rm×n be given by

A = UΛVT,

where Λ ∈ Rm×n has the non-negative singular values {λj}
min{m,n}
j=1 on its

diagonal and V ∈ Rn×n and U ∈ Rm×m are orthogonal matrices.†

The TSVD solution for 1 ≤ k ≤ p := rank(A) is given by

xk = VΛ†
kU

Ty ,

where

Λ†
k =



1/λ1 0 · · · 0 · · · 0

0 1/λ2

...
...

. . .

1/λk

0
...

. . .
...

0 · · · · · · 0


∈ Rn×m.

The matrix A† = VΛ†
pUT is called the Moore–Penrose pseudoinverse of A.

†This means that the columns {vj}nj=1 of V form an orthonormal basis for Rn, and
similarly the columns {uj}mj=1 of U are an orhonormal basis of Rm.



Morozov discrepancy principle



The implementation of TSVD raises the question: how to choose the
spectral cut-off parameter k? If k is too small, the TSVD operator loses
information about the forward operator. On the other hand, if k is chosen
too large, then the forward operator becomes ill-conditioned and sensitive
to measurement noise.

If the noise level of the data is known (or can be estimated), then one of
the simplest criteria is to choose the spectral parameter as large as
possible without fitting the solution to noise.



Morozov discrepancy principle

Let H1 and H2 be separable real Hilbert spaces and A : H1 → H2 a
compact linear operator.

How to choose the spectral cut-off index k ≥ 1 in the TSVD problem

Ax = Pky and x ⊥ Ker(A)?

There is a rule of thumb called the Morozov discrepancy principle:

Suppose that the data y ∈ H2 is a noisy approximation of noiseless
“exact” data y0 ∈ H2. While y0 is unknown to us, we may have an
estimate on the noise level, e.g.,

∥y − y0∥ ≈ ε > 0.

We choose the smallest k ≥ 1 such that the residual satisfies

∥y − Axk∥ ≤ ε.

Intuitively, this means that we cannot expect the approximate solution to
yield a smaller residual than the measurement error without fitting the
solution to noise.



Q: When does an index k ≥ 1 satisfying ∥y − Axk∥ ≤ ε exist?
A: When ε > ∥Py − y∥ and rank(A) = ∞, it follows from
Ran(A) = Ran(P) ⊥ Ran(I − P) that

∥Axk − y∥2 = ∥Axk − Py + Py − y∥2 = ∥Axk − Py∥2 + ∥(P − I )y∥2

=
∞∑

n=k+1

|⟨y , un⟩|2 + ∥(P − I )y∥2 k→∞−−−→ ∥Py − y∥2.

Due to the properties of the orthogonal projection,
∥Py − y∥ = infz∈Ran(A) ∥z − y∥, so this is the best we can do. (Note
however that there is no guarantee that prevents ∥xk∥ from blowing up as
k → ∞.)

On the other hand, if p = rank(A) <∞,

∥Axp − y∥ = ∥Ppy − y∥ = ∥Py − y∥.

One should usually avoid choosing the spectral cut-off to be this large in
practice.



Numerical example: backward heat equation

Let us consider the backward heat equation:
∂tu(x , t) = ∂2xu(x , t) for (x , t) ∈ (0, π)× R+,

u(0, ·) = u(π, ·) = 0 on R+,

u(·, 0) = f on (0, π),

where f : (0, π) → R is the initial heat distribution.

Forward problem: Given initial data f : (0, π) → R, determine the heat
distribution u(·,T ) at time T > 0.

Inverse problem: Reconstruct the initial state f based on noisy
measurements of u(·,T ) at time T > 0.



Let us consider a simple discretization of the PDE
∂tu(x , t) = ∂2xu(x , t) for (x , t) ∈ (0, π)× R+,

u(0, ·) = u(π, ·) = 0 on R+,

u(·, 0) = f on (0, π).

Let xj = jh for j = 0, . . . , 100, where h = π/100 is the step size.

Zero Dirichlet boundary conditions imply that u(x0, t) = u(x100, t) = 0.

The spatial second derivative can be discretized using the stencils

∂2xu(x1, t) =
−2u(x1, t) + u(x2, t)

h2
+O(h2),

∂2xu(xj , t) =
u(xj−1, t)− 2u(xj , t) + u(xj+1, t)

h2
+O(h2) for j = 2, . . . , 98,

∂2xu(x99, t) =
u(x98, t)− 2u(x99, t)

h2
+O(h2).

Denote U(t) = (Uj(t))
99
j=1 = (u(xj , t))

99
j=1 and F = (f (xj))

99
j=1.



∂

∂t



U1(t)
U2(t)
U3(t)

...
U98(t)
U99(t)


=

1

h2



−2 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2


︸ ︷︷ ︸

=:B



U1(t)
U2(t)
U3(t)

...
U98(t)
U99(t)


.

After spatial discretization, our PDE has been transformed into the initial
value problem

U̇(t) = BU(t), U(0) = F .

At time t = T > 0, the discretized heat distribution U := U(T ) is given by

U = AF ,

where A = eTB ∈ R99×99 and

eM :=
∞∑
k=0

1

k!
Mk

is the matrix exponential (scipy.linalg.expm in Python / expm in
MATLAB).



A note on simulating measurement data and inverse crimes

When simulating measurement data, one should take care not to use the
same computational model for inversion as the one which was used to
generate the measurements in the first place. This would lead to
unreasonably good reconstructions, since this is akin to multiplying a
matrix with its own inverse. This is known as an inverse crime. (Similar
concerns also apply to non-linear problems.)

With real-life measurement data, we do not have worry about this
phenomenon – measurements that come from nature are automatically
independent of any computational model we end up using for practical
inverse problems simulations.

A popular technique to avoid committing an inverse crime is using a
higher resolution computational model to generate the measurements and
interpolating the simulated data onto a coarser grid, where we plan to
carry out the actual computational inversion. Another good option is to
use an analytic solution, if one is readily available. We will use this
technique with the heat equation.



The forward problem of the heat equation
∂tu(x , t) = ∂2xu(x , t) for (x , t) ∈ (0, π)× R+,

u(0, ·) = u(π, ·) = 0 on R+,

u(·, 0) = f on (0, π),

has the classical series solution

u(x , t) =
∞∑
n=1

f̂n e
−n2t sin(nx),

where the coefficients f̂n are the Fourier sine series coefficients of the
initial heat distribution f satisfying

f (x) =
∞∑
n=1

f̂n sin(nx), f̂n =
2

π

∫ π

0
f (x) sin(nx) dx .



Let us fix the ground truth

f (x) =

{
1 if x ∈ [1, 2],

0 if x ∈ (0, 1) ∪ (2, π).

It is easy to see that the Fourier sine coefficients are given by

f̂n =
2

nπ
(cos n − cos 2n).

Let us plug these into the forward solution at time t = T > 0

u(xj ,T ) =
∞∑
n=1

f̂n e
−n2T sin(nxj), j = 1, . . . , 99,

and add some simulated measurement noise!

We assume that the data U(T ) ∈ R99 at time T = 0.1 is contaminated
with mean-zero Gaussian noise with standard deviation 0.01, and that the
discrepancy between the measured data and the underlying “exact” data
equals the square root of the expected value of the squared norm of the
noise vector, i.e.,

ε =
√
99 · 0.012 ≈ 0.0995.
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See the files heateq tsvd.py / heateq tsvd.m on the course webpage!


