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Practical matters

Monday May 29 (next week) is a public holiday
→ no lecture on May 29!

We will have a bonus live-coding lecture on Tuesday May 30 about
total variation regularization in place of the usual exercise session
(this material will not be essential to the course).

The deadline for the fifth exercise sheet will be moved to Tuesday
June 6. Note that tomorrow’s exercise session will happen as
planned.



Regularization by truncated iterative methods



Regularization by truncated iterative methods

For simplicity, we will only consider the case when

Ax = y (1)

is a system of linear equations, i.e., A ∈ Rm×n, x ∈ Rn, and y ∈ Rm.

Iterative methods attempt to solve (1) by finding successive
approximations for the solution starting from some initial guess.

Typically, the computation of such iterations involves multiplications
by A and its adjoint, but not explicit computation of inverse
operators. (Direct methods, such as Gaussian elimination, produce a
solution in a finite number of steps.)

Iterative methods are sometimes the only feasible choice if the
problem involves a large number of variables (e.g., in the order of
millions), in which case direct methods are prohibitively expensive.
Iterations are especially useful if multiplications by A are cheap: for
example, if A is sparse or it contains some other structure (e.g., it is a
multi-diagonal matrix arising from finite difference or finite element
approximation of an elliptic PDE).



Although iterative solvers have not usually been designed for ill-posed
equations, they often possess regularizing properties. If the iterations are
terminated before “the solution starts to fit to noise”, one often obtains
reasonable solutions for inverse problems.



Banach fixed point iteration

Let E be a Banach space and S ⊂ E . Consider a mapping, not necessarily
linear, T : E → E . We say that S is an invariant set for T if T (S) ⊂ S ,
that is,

T (x) ∈ S for all x ∈ S .

Moreover, T is a contraction on an invariant set S if there exists
0 ≤ κ < 1 such that

∥T (x)− T (y)∥ ≤ κ∥x − y∥ for all x , y ∈ S .

Finally, a vector x ∈ E is called a fixed point of T if

T (x) = x .



Theorem (Banach fixed point theorem)

Let E be a Banach space and S ⊂ E a closed invariant set for the (possibly
nonlinear) mapping T : E → E. Assume further that T is a contraction in
S. Then there exists a unique fixed point x ∈ S such that T (x) = x.
Furthermore, this fixed point can be found by the fixed point iteration

x = lim
k→∞

xk , where xk+1 = T (xk),

for any x0 ∈ S.

Proof. Let T : E → E be a mapping, S ⊂ E a closed invariant set such
that T (S) ⊂ S , and let T be a contraction in S ,

∥T (x)− T (y)∥ ≤ κ∥x − y∥ for all x , y ∈ S ,

with κ < 1. For all j > 1, we have

∥xj+1 − xj∥ = ∥T (xj)− T (xj−1)∥ ≤ κ∥xj − xj−1∥.

Inductively, it follows that

∥xj+1 − xj∥ ≤ κj−1∥x2 − x1∥.



For any n, k ∈ N, we have

∥xn − xk∥ ≤
max{n,k}−min{n,k}∑

j=1

∥xmin{n,k}+j − xmin{n,k}+j−1∥

≤
max{n,k}−min{n,k}∑

j=1

κmin{n,k}+j−2∥x2 − x1∥

≤ κmin{n,k}−1

1− κ
∥x2 − x1∥

n,k→∞−−−−−→ 0,

where we used the formula for the geometric series. Therefore (xj) is a
Cauchy sequence and thus convergent (since E is a Banach space and
thus complete). The limit is in S since S is closed.

Finally, as a contraction, T is (Lipschitz) continuous and we have that

x = lim
k→∞

xk = lim
k→∞

T (xk−1) = T
(
lim
k→∞

xk−1) = T (x),

as desired.



Landweber–Fridman iteration



Landweber–Fridman iteration

Instead of considering the original equation

Ax = y ,

let us consider the normal equation

ATAx = ATy .

Recall that x ∈ Rn satisfies the normal equation iff it minimizes the
residual

∥Ax − y∥.

Moreover, there exists a unique element of Rn, given by x† := A†y , which
satisfies the normal equation and x† ∈ Ker(A)⊥ (the minimum norm
solution).



Let us define the affine mapping T : Rn → Rn by

T (x) = x + β(ATy − ATAx), β ∈ R.

Note that any solution of the normal equation ATAx = ATy is a fixed
point of T .

If β is small enough, then there is only one fixed point of T in Ker(A)⊥,
precisely x†, and it can be reached by the fixed point iteration if x0 = 0.

Theorem

Let λ1 be the largest singular value of matrix A and let 0 < β < 2/λ2
1 be

fixed. Then the fixed point iteration

xk+1 = T (xk), x0 = 0,

converges toward x† as k →∞.



Proof. Let S := Ker(A)⊥ = Ran(AT). Clearly T (S) ⊂ S since

T (x) = x + AT(βy − βAx) ∈ Ran(AT)

for all x ∈ Ran(AT). Thus S is invariant under T .

Recall that A and its transpose can be written using the SVD of A as

Ax =

p∑
j=1

λj(v
T
j x)uj and ATy =

p∑
j=1

λj(u
T
j y)vj ,

where p = rank(A) and λj are the positive singular values of A. The
singular vectors {vj}pj=1 and {uj}pj=1 span S = Ker(A)⊥ and Ran(A),
respectively, and thus

x =

p∑
j=1

(vTj x)vj for all x ∈ S .



Let x , z ∈ S . Then x − z ∈ S and

T (x)− T (z) = (x − z)− βATA(x − z)

=

p∑
j=1

vTj (x − z)vj − β

p∑
j=1

λ2
j (v

T
j (x − z))vj

=

p∑
j=1

(1− βλ2
j )(v

T
j (x − z))vj .

Since λ1 is the largest singular value, it follows that

−1 < βλ2
j − 1 ≤ βλ2

1 − 1 < 2− 1 = 1 for all j ∈ {1, . . . , p}.

Hence
κ := max

j=1,...,p
|βλ2

j − 1| < 1.



In consequence,

∥T (x)− T (y)∥2 ≤
p∑

j=1

(1− βλ2
j )

2(vTj (x − z))2

≤ κ2
p∑

j=1

(vTj (x − z))2 = κ2∥x − z∥2,

which shows that T is a contraction on S . Since S is a closed invariant set
for T , there exists a unique fixed point of T in S .

Finally, recall that x† = A†y belongs to S = Ker(A)⊥ and it satisfies the
normal equation. Since x0 = 0 is in S (it is orthogonal to all vectors), the
fixed point iteration starting from x0 converges to x†.



Regularization properties of Landweber–Fridman

In what follows, we will assume that 0 < β < 2/λ2
1.

In the exercises, it will be shown that the kth iterate of the
Landweber–Fridman iteration can be written explicitly as

xk =

p∑
j=1

1

λj
(1− (1− βλ2

j )
k)(uTj y)vj , k = 0, 1, . . . .

Since we assumed |1− βλ2
j | < 1, then

(1− βλ2
j )

k k→∞−−−→ 0.

This is what one would expect since

x† =

p∑
j=1

1

λj
(uTj y)vj .



While k ∈ N is finite, the coefficients appearing in the series representation

xk =

p∑
j=1

1

λj
(1− (1− βλ2

j )
k)(uTj y)vj (2)

satisfy

1

λj
(1− (1− βλ2

j )
k) =

1

λj

(
1−

k∑
ℓ=0

(
k

ℓ

)
(−1)ℓβℓλ2ℓ

j

)

=
1

λj

k∑
ℓ=1

(
k

ℓ

)
(−1)ℓ+1βℓλ2ℓ

j =
k∑

ℓ=1

(
k

ℓ

)
(−1)ℓ+1βℓλ2ℓ−1

j ,

which converges to zero as λj → 0 (for a fixed k).

In consequence, while k is “small enough”, no coefficient of (uTj y)vj in (2)
is so large that the component of the measurement noise in the direction
uj is amplified in an uncontrolled manner. (Compare with Tikhonov
regularization, where the corresponding coefficients are λj/(λ

2
j + δ).)



Discrepancy principle for Landweber–Fridman iteration

Let y ∈ Rm be a noisy version of some underlying “exact” data vector
y0 ∈ Rm, and assume that

∥y − y0∥ ≈ ε > 0.

The Morozov discrepancy principle for the Landweber–Fridman iteration is
analogous to the truncated SVD: choose the smallest k ≥ 0 such that the
residual satisfies

∥y − Axk∥ ≤ ε.



Q: When does an index k ≥ 1 satisfying ∥y − Axk∥ ≤ ε exist?
A: When ε > ∥Py − y∥ = ∥y − A(A†y)∥ = ∥y − Ax†∥, where P = AA† is
the orthogonal projection onto Ran(A) (cf. 3rd exercises) and x† = A†y is
the minimum norm solution. Since the sequence (xk)

∞
k=0 converges to x†,

for any ε > ∥y − Ax†∥, there exists k = kε ∈ N such that

∥xk − x†∥ ≤ 1

∥A∥
(ε− ∥y − Ax†∥).

By the reverse triangle inequality

∥y − Axk∥ − ∥y − Ax†∥ ≤ ∥(y − Axk)− (y − Ax†)∥
≤ ∥A∥∥xk − x†∥
≤ ε− ∥y − Ax†∥.

From this, we deduce that ∥y − Axk∥ ≤ ε as desired.



Conjugate gradient method



Krylov subspace methods

Krylov subspace methods are iterative solvers for (large scale) matrix
equations of the form Ax = y , A ∈ Rn×n. In general terms, the solution
vector x ∈ Rn is approximated as a linear combination of vectors of the
form u, Au, A2u, . . ., with some given u ∈ Rn. If multiplication by A is
cheap – for example, when A is sparse – Krylov subspace methods can be
particularly efficient.

We consider only the most well-known Krylov subspace method, the
conjugate gradient method. It is worth mentioning that other methods in
this class include, e.g., the generalized minimum residual method
(GMRES) and the biconjugate gradient method (BiCG).



Assumptions on A and A-dependent inner product

In what follows, we assume that the system matrix A ∈ Rn×n is symmetric
and positive definite:

AT = A and uTAu > 0 for all u ∈ Rn \ {0}.

Note that this implies that A is injective.† By the fundamental theorem of
linear algebra, A is invertible. Furthermore, the inverse A−1 ∈ Rn×n is also
symmetric and positive definite.

We define
⟨u, v⟩A := uTAv and ∥u∥A :=

√
⟨u, u⟩A.

Since A was assumed to be symmetric and positive definite, it is
straightforward to check that ⟨·, ·⟩A : Rn × Rn → R defines an inner
product on Rn. In consequence, ∥ · ∥A : Rn → R is a norm.

Finally, we say that non-zero vectors {s0, . . . , sk} ⊂ Rn are A-conjugate if

⟨si , sj⟩A = sTi Asj = 0 whenever i ̸= j ,

i.e., they are orthogonal with respect to the inner product ⟨·, ·⟩A.
†Ax = Ay ⇒ A(x − y) = 0 ⇒ (x − y)TA(x − y) = 0 ⇒ x − y = 0.



Error, residual, and minimization problem

Let x∗ = A−1y ∈ Rn denote the unique solution of the equation

Ax = y

for a given y ∈ Rn. We define the error and residual corresponding to
some approximate solution x ∈ Rn by

e = x∗ − x and r = y − Ax = Ae.

Let ϕ : Rn → R be the A-dependent quadratic functional

ϕ(x) = ∥e∥2A = eTAe = rTA−1r = ∥r∥2A−1 .

Since ∥ · ∥A is a norm, ϕ(x) ≥ 0 for all x ∈ Rn and

ϕ(x) = 0 ⇔ e = 0 ⇔ x = x∗.

Minimizing ϕ is equivalent to solving Ax = y.



The conjugate gradient method is an iterative scheme which, at each step
of the iteration, returns xk+1 = argminx∈Sk

ϕ(x), where

Sk := {x ∈ Rn | x = x0 + c0s0 + · · ·+ cksk , c0, . . . , ck ∈ R}
is a hyperplane determined by a sequence of vectors s0, . . . , sk ∈ Rn.

Starting from an initial guess x0 ∈ Rn, the successive iterates are given by

xk+1 = xk + αksk , k = 0, 1, 2, . . . .

Define the residual rk = y − Axk corresponding to iterate xk and let
s0 = r0 be the initial search direction. Then the parameters are

αk =
sTk rk

sTk Ask
for k ≥ 0, (“step size”)

sk = rk + βk−1sk−1, βk−1 = −
sTk−1Ark

sTk−1Ask−1
for k ≥ 1. (“search direction”)

We proceed to show that the search directions defined by the above
recursion are A-conjugate (and thus linearly independent) and the iterates
xk+1 obtained using this algorithm are minimizers of the functional ϕ(x)
on the hyperplanes Sk . Note especially that Sn−1 = Rn, so an exact
solution (up to rounding errors) is achieved in at most n iteration steps.



Step 1: If s0, . . . , sk are A-conjugate, then rk+1 ⊥ span{s0, . . . , sk}.
Now xk+1 = xk + αksk = xk−1 + αk−1sk−1 + αksk = · · · = x0 +

∑k
j=0 αjsj

and rk+1 = y − Axk+1 = y − Ax0 −
∑k

j=0 αjAsj = r0 −
∑k

j=0 αjAsj .
Let ℓ ∈ {0, . . . , k}. Then

rTk+1sℓ =

(
r0 −

k∑
j=0

αjAsj

)T

sℓ (AT = A)

= rT0 sℓ −
k∑

j=0

αjs
T
j Asℓ (sTj Asℓ = 0 for j ̸= ℓ)

= rT0 sℓ − αℓs
T
ℓ Asℓ (αℓ =

sTℓ rℓ
sTℓ Asℓ

)

= rT0 sℓ − sTℓ rℓ (rℓ = r0 −
∑ℓ−1

j=0 αjAsj)

= rT0 sℓ − sTℓ r0 +
ℓ−1∑
j=0

αjs
T
ℓ Asj

= 0,

as desired.



Step 2: s0, . . . , sk are A-conjugate and linearly independent.

By induction with respect to k ∈ N0. If k = 0, then {s0} is trivially
A-conjugate. Suppose that the claim has been proved for some k ∈ N0; we
show that sTk+1Asj = 0 for all j ∈ {0, . . . , k}.
Let j ∈ {0, . . . , k}. Then

sTk+1Asj = (rk+1 + βksk)
TAsj = rTk+1Asj + βks

T
k Asj .

If 0 ≤ j ≤ k − 1, then the above expression vanishes by the previous slide
and the induction hypothesis. Let j = k . Then

sTk+1Ask = rTk+1Ask + βks
T
k Ask (βk = − sTk Ark+1

sTk Ask
)

= 0,

as desired. For the linear dependence, write c0s0 + · · ·+ cksk = 0 for some
undetermined coefficients c0, . . . , ck ∈ R. For any ℓ ∈ {0, . . . , k},
multiplying from the left by sTℓ A yields

c0s
T
ℓ As0 + · · ·+ cks

T
ℓ Ask = 0⇒ cℓs

T
ℓ Asℓ = 0

xTAx=0
iff x=0⇒ cℓ = 0

as desired.



Step 3:h∗ = argmin
h∈Rk+1

ϕ(x0 + Skh) iff h∗ = (ST
k ASk)

−1ST
k r0, where x0 ∈ Rn,

r0 = y − Ax0, Sk = [s0, . . . , sk ], and s0, . . . , sk ∈ Rn are lin. independent.

We first verify that the expression (ST
k ASk)

−1ST
k r0 is well-defined by

showing that ST
k ASk ∈ R(k+1)×(k+1) is invertible. By the positive

definiteness of A,

ST
k ASkz = 0 ⇒ zTST

k ASkz = 0 ⇒ ∥Skz∥2A = 0 ⇒ Skz = 0,

which means that z = 0 since the columns of Sk are linearly independent.
Hence ST

k ASk is injective, and (ST
k ASk)

−1 exists by the fundamental
theorem of linear algebra.

The residual corresponding to x = x0 + Skh satisfies

r = y − A(x0 + Skh) = r0 − ASkh,

thus (recall that ϕ(x) = rTA−1r for r = y − Ax)

ϕ(x0 + Skh) = (r0 − ASkh)
TA−1(r0 − ASkh)

= rT0 A
−1r0 − 2rT0 Skh + hTST

k ASkh.



We obtained

ϕ(x0 + Skh) = rT0 A
−1r0 − 2rT0 Skh + hTST

k ASkh.

The Hessian of h 7→ ϕ(x0+Skh) is 2S
T
k ASk , which is positive definite since

uT(ST
k ASk)u = (Sku)

TA(Sku) ≥ 0 for all u ∈ Rk+1,

where equality holds iff Sku = 0 ⇔ u = 0. Hence h 7→ ϕ(x0 + Skh) is
convex, and we can find its unique minimizer by solving the zero point of
its gradient:

0 = ∇hϕ(x0 + Skh) = 2ST
k ASkh − 2ST

k r0

⇔ h = (ST
k ASk)

−1ST
k r0.



Step 4: Let x0 ∈ Rn be the initial guess and Sk = [s0, . . . , sk ], where

s0, . . . , sk ∈ Rn are the conjugate gradient search directions. The

conjugate gradient iterates satisfy xk+1 = argminh∈Rk+1ϕ(x0 + Skh).

Let aj = (α0, . . . , αj)
T ∈ Rj+1, where αi =

sTi ri
sTi Asi

are the line search

parameters of the conjugate gradient method. Then

xj = x0 +
∑j−1

i=0 αi si = x0 + Sj−1aj−1, j = 1, . . . , k + 1.

The residual corresponding to xj is

rj = y − Axj = (y − Ax0)− ASj−1aj−1 = r0 − ASj−1aj−1

and hence

sTj rj = sTj r0 − sTj ASj−1aj−1 = sTj r0 − sTj [As0, . . . ,Asj−1]︸ ︷︷ ︸
=0

aj−1,

since sTj Asi = 0, i < j , due to A-conjugacy. Therefore

αj =
sTj rj

sTj Asj
=

sTj r0

sTj Asj
, j = 0, . . . , k .



The line search parameters can be written as

αj =
sTj rj

sTj Asj
=

sTj r0

sTj Asj
, j = 0, . . . , k .

On the other hand, since {s0, . . . , sk} are A-conjugate, we have that

(ST
k ASk)

−1 = diag(sT0 As0, . . . , s
T
k Ask)

−1

= diag

(
1

sT0 As0
, . . . ,

1

sTk Ask

)
.

Especially, this means that the minimizer h∗ of ϕ(x0 + Skh) over the
hyperplane Sk is given by

h∗ = (ST
k ASk)

−1ST
k r0 = diag

(
1

sT0 As0
, . . . ,

1

sTk Ask

)s
T
0 r0
...

sTk r0

 =

 α0
...
αk

 = ak .

In consequence, xk+1 = x0 + Skak = x0 + Skh∗.



Remark. In the conjugate gradient method, the search directions are given
by s0 = r0 and

sk = rk + βk−1sk−1, k ≥ 1,

where rk = y − Axk . Note that span{s0, . . . , sk} = span{r0, . . . , rk}.

Especially, the conjugate gradient iterate xk+1 satisfies

xk+1 = argmin
x∈x0+span{s0,...,sk}

∥x − x∗∥2A = argmin
x∈x0+span{r0,...,rk}

∥x − x∗∥2A

= argmin
x∈x0+Kk

∥x − x∗∥2A,

where the search space Kk := span{r0,Ar0, . . . ,Ak−1r0} is precisely the
kth Krylov subspace of A with the initial vector r0 = y − Ax0. Some basic
properties of Krylov subspaces:

A(Kk) ⊂ Kk+1.

Kk−1 ⊂ Kk (Krylov subspaces are nested).

dimKk ≤ k (dimension of the kth Krylov subspace is at most k).

dimKk ≤ dimKk−1 + 1 (dimension of the successive Krylov space is
at most one higher than that of the former).



The conjugate gradient algorithm is usually presented in slightly different
form. Assuming that the iteration has not yet converged at the iterate xk ,

we can deduce the following formulae for αk =
sTk rk
sTk Ask

and βk = − sTk Ark+1

sTk Ask
.

Simplifying αk : Since rk ⊥ sk−1, we have that

sTk rk=(rk + βk−1sk−1)
Trk = ∥rk∥2 ⇒ αk=

∥rk∥2

sTk Ask
. (3)

Simplifying βk : since rk+1 ⊥ span{s0, . . . , sk} ∋ rk and
rk+1 = rk − αkAsk , then

∥rk+1∥2 = rTk+1(rk − αkAsk)
(3)
= − ∥rk∥

2

sTk Ask
rTk+1Ask=βk∥rk∥2

and thus

βk =
∥rk+1∥2

∥rk∥2
.

This leads to the “standard form” of the method.



Pseudocode for the conjugate gradient algorithm

Given: symmetric, positive definite system matrix A ∈ Rn×n,
data y ∈ Rn.

1. Choose initial guess x0 ∈ Rn.

2. Set k = 0, r0 = y − Ax0, s0 = r0;

Repeat until the chosen stopping rule is satisfied:

3. αk = ∥rk∥2/(sTk Ask);
4. xk+1 = xk + αksk ;
5. rk+1 = rk − αkAsk ;
6. βk = ∥rk+1∥2/∥rk∥2;
7. sk+1 = rk+1 + βksk ;
8. k ← k + 1;

end



Numerical example

Let us consider minimization with the steepest descent directions

sk = −∇ϕ(xk) = 2(y − Axk), k = 0, 1, . . . . (4)

In general, the convergence of the sequence {xk} toward the global
minimizer x∗ = A−1y can be fairly slow. We demonstrate this with the
following example.

Let

A =

[
1 0
0 5

]
and y =

[
0
0

]
.

Now
ϕ(x) = x21 + 5x22 .

We plot the level contours of ϕ and the sequence {xk}5k=0 starting from
x0 = (1, 0.3)T. The true solution x∗ = (0, 0)T is marked with a blue cross.

We also illustrate minimization over the hyperplanes S0 and S1,
i.e., x0+S0h∗ and x0+S1h∗ with S0 = [s0] ∈ R2×1 and S1 = [s0, s1] ∈ R2×2,
where s0 and s1 were computed using the sequential method (4).



++

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0
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Figure: Left: Minimization using steepest descent search directions sk = −∇ϕ(xk).
Right: In the linear case, the conjugate gradient method iteratively finds the
optima over the hyperplanes S1 and S2. The CG method converges to the actual
solution x∗ = (0, 0)T (marked with a blue cross) in n = 2 iterations (which equals
the dimensionality of the ambient space R2).



Conjugate gradient method for inverse problems

According to the previous construction, if the conjugate gradient method
is applied to the equation

Ax = y ,

where A ∈ Rn×n is symmetric and positive definite, an exact solution (up
to rounding errors) is achieved in at most n iteration steps, i.e.,
xn = x∗ = A−1y . However, the algorithm typically converges satisfactorily
much quicker. A (pessimistic) convergence rate is proved in the first
exercise of week 4.

With ill-posed problems, one should be more cautious and terminate the
iterations well before convergence to avoid fitting the solution to noise. In
fact, since the conjugate gradient method often converges very fast, one
should be extremely cautious.



Let us consider a general ill-posed matrix equation

Ax = y ,

where A ∈ Rm×n and y ∈ Rm are given.

If m = n and there is some available prior information suggesting that
A is, at least in theory, positive (semi-)definite, one can apply the
conjugate gradient algorithm directly on the original equation.

More generally, one may still consider the normal equation

ATAx = ATy ,

which corresponds to solving the original equation in the sense of
least squares.



The system matrix ATA = (ATA)T ∈ Rn×n is symmetric and

uTATAu = ∥Au∥2 > 0 for all u ∈ Rn \Ker(A).

Thus the conditions of the conjugate gradient algorithm are almost
satisfied, and one may look for the solution of the inverse problem by using
the conjugate gradient algorithm with A replaced by ATA and y by ATy .†

As a stopping criterion, one may try, e.g., the Morozov principle for the
original equation: terminate the iteration when

∥y − Axk∥ ≤ ε

for some ε > 0, which measures the amount of noise in y in some sense.

†Small remark on implementation: matrix-matrix products are typically far more
expensive to compute than matrix-vector products. For example, instead of computing
expressions like residual = A’*y - A’*A*x0 when implementing the conjugate
gradient method in MATLAB, one should use parentheses to parse the computation like
residual = A’*y - A’*(A*x0). Similarly residual = A.T@y - A.T@(A@x0) in
Python.



Numerical example: backward heat equation revisited

Let us revisit the backward heat equation:
∂tu(x , t) = ∂2

xu(x , t) for (x , t) ∈ (0, π)× R+,

u(0, ·) = u(π, ·) = 0 on R+,

u(·, 0) = f on (0, π),

where f : (0, π)→ R is the initial heat distribution.

Inverse problem: Reconstruct the initial state f based on noisy
measurements of u(·,T ) at time T > 0.

Let xj = jh, j = 0, . . . , 100 with h = π/100, and denote U(t) = (Uj(t))
99
j=1

and F = (f (xj))
99
j=1. At time t = T > 0, the discretized heat distribution

U := U(T ) is given by
U = AF ,

where A = eTB ∈ R99×99 and B = h−2tridiag(1,−2, 1) ∈ R99×99.



As ground truth, we take

f (x) =

{
1 if x ∈ [1, 2],

0 if x ∈ (0, 1) ∪ (2, π).

We assume that the simulated data U = U(T ) ∈ R99 at time T = 0.1 is
contaminated with mean-zero Gaussian noise with standard deviation 0.01,
and that the discrepancy between the measured data and the underlying
“exact” data equals the square root of the expected value of the squared
norm of the noise vector, i.e.,

ε =
√
99 · 0.012 ≈ 0.0995.

We use the conjugate gradient method to solve the normal equation

ATAF = ATU,

and terminate the algorithm for the first CG iterate Fk such that

∥AFk − U∥ ≤ ε.
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Although we have simply scratched the surface by covering some of the
basic ideas surrounding the conjugate gradient scheme and demonstrating
how an “early stopping rule” can provide reasonable solutions for inverse
problems, the regularizing properties of the conjugate gradient method
have been analyzed more explicitly in the literature. A classic textbook
specifically about this subject is:

M. Hanke. Conjugate gradient type methods for ill-posed problems.
Pitman Research Notes in Mathematics Series, 327.


