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Bayesian inverse problems

The second part of the course will focus on the Bayesian approach to
inverse problems.

We will mainly follow

D. Sanz-Alonso, A. M. Stuart, and A. Taeb (2018). Inverse Problems
and Data Assimilation. https://arxiv.org/abs/1810.06191

Other helpful texts are

J. Kaipio and E. Somersalo (2005). Statistical and Computational
Inverse Problems. Springer, New York, NY.

D. Calvetti and E. Somersalo (2007). Introduction to Bayesian
Scientific Computing – Ten Lectures on Subjective Computing.
Springer, New York, NY.

https://arxiv.org/abs/1810.06191


The Bayesian approach

Suppose that we have a noisy measurement model

y = F (x) + η,

where F : Rd → Rk is the forward mapping, y ∈ Rk is the measurement,
η ∈ Rk is measurement noise, and x ∈ Rd is the unknown.

In the Bayesian approach to solving inverse problems

both the noise η and the unknown quantity x (in a statistical context
usually called the parameter) are modelled as random variables with
values in Rk and Rd , respectively, and their probability distributions
are assumed to be known.

the quantity of interest is now the conditional distribution of x , given
the measured data y , which is considered the solution to the inverse
problem in the Bayesian sense.



We consider the noisy measurement model

y = F (x) + η.

The distribution of the parameter x formalizes all knowledge and
beliefs about x before the data y is taken into account. In the
Bayesian context, it is called prior distribution.

The conditional distribution of x , given y , takes the data y into
account, which can be understood as updating our knowledge and
beliefs about the parameter x . In the Bayesian context, it is called
posterior distribution.

The posterior distribution is usually obtained using some form of Bayes’
formula. It contains all knowledge about the parameter available from the
prior distribution and the measured data. It can be used to obtain
parameter estimates that are most likely in some sense or that represent
the posterior distribution well. In addition, the spread of the posterior
distribution provides information about the remaining uncertainty in the
parameter reconstruction.



While this approach has the advantage of being based upon explicit
assumptions on the distribution of the noise and the parameter, it is not
immediately clear why or how it should help resolving the ill-posedness of a
problem. We will, however, see how under certain conditions the Bayesian
approach has a regularizing effect in the sense that both the posterior
distribution, and estimators based upon it, are stable with respect to
changes in the data. To this end, we will introduce metrics to measure the
distance of probability distributions during next week’s lecture.



A brief introduction to probability theory

Here, we give a brief – and somewhat informal – overview of some
fundamental notions from probability theory that are needed for our
purposes, such as random variables, probability distributions and densities,
as well as joint, marginal, and conditional probability densities.



Probability measures

Let Ω be a set and let P(Ω) denote its power set. A subset F of P(Ω) is
called σ-algebra (or σ-field) if

1 ∅ ∈ F ,

2 Ω \ A ∈ F for every A ∈ F , and

3
⋃

n∈N An ∈ F for every countable subset {An}n∈N of F .

A pair (Ω,F) is called a measurable space.

An intuitive way of thinking about σ-algebras is that they contain
information. The subsets contained in a σ-algebra represent events for
which we can decide, after the observation, whether they happened or not.
Hence, F represents all the information we can get from an experiment.
For a topological space Ω (e.g., Rd), the smallest σ-algebra containing all
open sets in Ω is called Borel σ-algebra on Ω and it is denoted by B(Ω).



A function µ: F → [0,∞) ∪ {∞} is called probability measure if

(i) µ(∅) = 0,
(ii) for every countable subset {An}n∈N ⊂ F of pairwise disjoint sets (i.e.,

Ai ∩ Aj = ∅ if i ̸= j),

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An),

(iii) and µ(Ω) = 1.

We call µ(A) the probability of an event A ∈ F . If µ(A) = 1, we say that
the event A occurs almost surely. A triple (Ω,F , µ) is called probability
space. If only properties (i) and (ii) are satisfied, µ is called a measure. A
measure is called σ-finite if Ω is the countable union of measurable sets
with finite measure.

Example

The Dirac measure δm at a point m ∈ Rd is a probability measure on
(Rd ,B(Rd)) defined by

δm(A) =

{
1 if m ∈ A,

0 if m /∈ A
for all A ∈ B(Rd).



Example

The Lebesgue measure λ on (Rd ,B(Rd)) is σ-finite, but not a probability
measure, since λ(Rd) = ∞.

Let µ and ν be two measures on the same measure space. Then µ is said
to be absolutely continuous with respect to ν (or dominated by ν) if
ν(A) = 0 implies µ(A) = 0 for each A ∈ F . We denote this by µ ≪ ν.
Measures µ and ν are called equivalent if µ ≪ ν and ν ≪ µ. If µ and ν
are supported on disjoint sets, they are called mutually singular.

Theorem (Radon–Nikodym)

Let µ and ν be two measures on a measure space (Ω,F). If µ ≪ ν and ν
is σ-finite, then there exists a unique ν-integrable function f such that

µ(A) =

∫
A
f (ω)ν(dω) for all A ∈ F .

The function f is called Radon–Nikodym derivative (or density) of µ with
respect to ν and it is denoted by dµ

dν .



Example

If µ is a measure which is absolutely continuous with respect to the
Lebesgue measure λ on (Rd ,B(Rd)), then it has a unique density
p ∈ L1(Rd) by the Radon–Nikodym theorem.

Example

Let µ1 = U([0, 1]) and µ2 = U([0, 2]) be uniform probability measures on
R. Then µ1 ≪ µ2 with

dµ1

dµ2
(t) =

{
2 for t ∈ [0, 1],

0 otherwise,

but µ2 is not absolutely continuous with respect to µ1 because
µ1([1, 2]) = 0, whereas µ2([1, 2]) =

1
2 > 0.



Weak convergence of probability measures

A sequence {µn}n∈N of probability measures is said to converge weakly to
µ if

lim
n→∞

∫
Ω
f (ω)µn(dω) =

∫
Ω
f (ω)µ(dω)

for every bounded continuous function f ∈ Cb(Ω,R). In this case, we
write µn ⇀ µ.



Random variables

A function x : Ω → X between a probability space (Ω,F , µ) and a
measurable space (X ,X ) is now called a random variable (with values in
X ) if it is measurable, that is, if

x−1(A) ∈ F for every A ∈ X .

Here, x−1(A) = {ω ∈ Ω : x(ω) ∈ A}.
A random variable x induces a probability measure ν on X , defined by

ν(A) := µ(x−1(A)) for all A ∈ X ,

which is called probability distribution (or law) of x . We write x ∼ ν if x is
distributed according to ν.

A random variable x connects an event A ∈ X with a corresponding event
x−1(A) ∈ F and assigns the probability of x−1(A) to A. This probability is
denoted by

P(x ∈ A) := ν(A) = µ(x−1(A)) = µ({ω ∈ Ω : x(ω) ∈ A}).



Now, let x be a random variable with values in (Rd ,B(Rd)) and ν its
distribution.

If ν is absolutely continuous with respect to the Lebesgue measure λ on
Rd , then by the Radon–Nikodym theorem there exists a unique
p ∈ L1(Rd) such that

ν(A) =

∫
A
p(u)du for all A ∈ B(Rd).

The function p is called probability density of x .

Throughout, we will work with Rd -valued random variables and assume
that they have a probability density.



The mean or expected value of an Rd -valued random variable x with
distribution ν and density p is given by

E[x ] :=
∫
Rd

xν(dx) =

∫
Rd

xp(x)dx .

A mode x̄ of a random variable x is defined as a maximizer of its
density p, i.e.,

x̄ ∈ argmax
x∈Rd

p(x).

The covariance (or covariance matrix) of two random variables x1 and
x2 is defined by

Cov(x1, x2) = E
[
(x1 − E[x1])(x2 − E[x2])T

]
.

The characteristic function φx of x is defined by

φx(h) =

∫
Rd

exp(i hTx) ν(dx) =

∫
Rd

exp(i hTx)p(x)dx for all h ∈ Rd .

A random variable is uniquely determined by its characteristic function.



Gaussian random variables

Gaussian random variables arise naturally in many applications.

A Gaussian distribution is a popular choice for the prior distribution.

By the central limit theorem, a Gaussian distribution is often a good
approximation to inherently non-Gaussian distributions when the
observation is based on a large number of mutually independent
random events. For this reason the noise is often assumed to have a
Gaussian distribution.

Let m ∈ Rd and C ∈ Rd×d be a symmetric positive semidefinite matrix
(C ⪰ 0). An Rd -valued random variable x is said to be Gaussian (or
normal) with mean m and covariance C , denoted by x ∼ N (m,C ), if its
characteristic function φx is given by

φx(h) = exp

(
i hTm − 1

2
hTCh

)
for all h ∈ Rd .

A Gaussian random variable is completely determined by its mean and its
covariance.



If, in addition, C is positive definite (C ≻ 0), x ∼ N (m,C) has the probability
density

P(x) = 1

(2π)d/2
√
detC

exp

(
−1

2
(x −m)TC−1(x −m)

)
=

1

(2π)d/2
√
detC

exp

(
−1

2
∥C− 1

2 (x −m)∥
2
)
.

Note that C is invertible and C−1/2 exists due to our assumptions on C . Here,
∥x∥C−1 := ∥C−1/2x∥.
The Dirac measure δm at a point m ∈ Rd can be understood as a Gaussian
distribution with covariance C = 0, i.e., δm = N (m, 0).

If z1 ∼ N (m1,C1) and z2 ∼ N (m2,C2) are independent and a1, a2 ∈ R, then

z = a1z1 + a2z2 ∼ N (a1m1 + a2m2, a
2
1C1 + a22C2).

If z ∼ N (m,C), L ∈ Rd×k , and a ∈ Rd , then

w = Lz + a ∼ N (Lm + a, LCLT).

The weak convergence of Gaussian random variables is equivalent to convergence
of their means and covariances. That is, a sequence zn ∼ N (mn,Cn) converges
weakly towards z ∼ N (m,C) (zn ⇀ z), if and only if mn → m and Cn → C .



Conditional and marginal probability densities

Let x and y be random variables with values in Rd and Rk , respectively. If
the random variable (x , y) has a probability density px ,y , i.e., if

P(x ∈ A, y ∈ B) = P((x , y) ∈ A× B) =

∫
A×B

px ,y (u, v)d(u, v),

for all A ∈ B(Rd) and B ∈ B(Rk), then px ,y is called joint probability
density of x and y . Here P(x ∈ A, y ∈ B) := P(x ∈ A and y ∈ B). To
simplify notation, we will also write P(x , y) := px ,y (x , y).

Now, the marginal probability density px of x is defined by

px(u) =

∫
Rk

px ,y (u, v)dv for all u ∈ Rd .

Analogously, the marginal density of y is

py (v) =

∫
Rd

px ,y (u, v)du for all v ∈ Rk .



The marginal density of x is indeed the probability density for x in the
situation that we have no information about the random variable y ,
because

P(x ∈ A) = P(x ∈ A, y ∈ Rk) =

∫
A×Rk

px ,y (u, v)d(u, v)

=

∫
A

(∫
Rk

px ,y (u, v)dv

)
du =

∫
A
px(u)du

for every A ∈ B(Rd).

The random variables x and y are called independent (denoted by x ⊥ y) if

P(x ∈ A, y ∈ B) = P(x ∈ A)P(y ∈ B)

for all A ∈ B(Rd), B ∈ B(Rk) or, equivalently, if

px ,y (u, v) = px(u)py (v) almost surely.

To simplify notation, we will also write P(x) := px(x).



Next, we consider the random variable x in the opposite situation that we
know everything about the random variable y : we have observed it and
know what value it has taken.

We say we consider the random variable x , given that we know the value
y0 taken by y , and denote this by x |y = y0. For y0 ∈ Rk with py (y0) > 0,
the conditional probability density of x |y = y0, px |y=y0 , is then defined by

px |y=y0(u) =
px ,y (u, y0)

py (y0)
.

If x and y are independent and py (y0) > 0, then

px |y=y0(u) = px(u).

To simplify notation, we will also write P(x |y) := px |y (x) := px |y=y (x).



Bayes’ formula

Let (x , y) be a random variable with joint density P(x , y) on Rd × Rk . If
P(y) > 0, then the conditional probability density of x , given y , equals

P(x |y) = P(x , y)
P(y)

, P(y) =
∫
Rd

P(x , y)dx .

On the other hand, the conditional probability density of y in case we
know the value of the unknown x , is called the likelihood function

P(y |x) = P(x , y)
P(x)

, if P(x) > 0.

The joint density of (x , y), in turn, can be expressed in terms of the
likelihood of y , given x , as P(x , y) = P(y |x)P(x), which leads to Bayes’
formula

P(x |y) = P(y |x)P(x)∫
Rd P(y |x)P(x)dx

.

Bayes’ formula presents a way to express the conditional probability
density of x , given y , assuming that the conditional density of y , given x ,
and the marginal density of x are known.



Bayes’ formula for inverse problems

We return to an inverse problem of estimating an unknown parameter
x ∈ Rd from data y ∈ Rk that is connected to x via the model

y = F (x) + η.

We make the following assumptions:

A1 The noise η has the probability density ν on Rk .

A2 The parameter x has the probability density π on Rd .

A3 The random variables x and η are independent.



The following theorem yields the probability density of the posterior
distribution, i.e., the conditional density πy (x) := P(x |y) of the parameter
x , given a specific realization y of the measured data.

Lemma

Under assumptions A1−A3, the likelihood (i.e., the conditional
probability of y , given x) is

P(y |x) = ν(y − F (x)).

Proof. The forward model y = F (x) + η defines the conditional probability
density

P(y |x) = py |x(y) = pF (x)+η|x(y)

= pη|x(y − F (x)) = pη(y − F (x)) = ν(y − F (x))

due to the assumptions η ⊥ x and η ∼ ν.



Theorem (Bayes’ theorem)

If assumptions A1−A3 hold and

Z (y) :=

∫
Rd

ν(y − F (x))π(x)dx > 0,

then

πy (x) =
1

Z (y)
ν(y − F (x))π(x). (1)

Proof. By the previous Lemma, the random variable (x , y) has the joint
density

P(x , y) = P(y |x)P(x) = ν(y − F (x))π(x),

since x ∼ π by assumption. Now, the density of the posterior distribution
is defined as

πy (x) = P(x |y) = P(x , y)
P(y)

=
ν(y − F (x))π(x)

P(y)
,

and the marginal density of y is given by

P(y) =
∫
Rd

P(x , y)dx = Z (y) > 0.



The condition that the marginal density P(y) of the observed data y
is positive means that the observed data is assumed to be consistent
with the probabilistic assumptions A1−A3.

Bayes’ formula (1) implies that the posterior distribution is absolutely
continuous with respect to the prior distribution, πy ≪ π, with the
Radon–Nikodym derivative

dπy

dπ
(x) =

ν(y − F (x))

Z (y)
.

This means that an event cannot have positive probability under the
posterior distribution if it does not have positive probability under the
prior distribution.

Bayes’ theorem can be generalized to infinite-dimensional spaces, cf.,
e.g., [Theorem 14, Dashti–Stuart 2017]. However, its formulation
involves more subtlety. There is no Lebesgue measure on
infinite-dimensional spaces, so the density of the posterior distribution
is stated with respect to the prior distribution instead.



Case study: source localization

Suppose that a particle with unit charge is located at some (unknown)
point x∗ ∈ (0, 1) and our goal is to locate it based on measurements of
voltage at the interval end points x = 0 and x = 1. The mathematical
model for the voltage at any point x ∈ [0, 1] is given by

y(x) =
1

|x∗ − x |
.

Our noisy measurements are modeled by y1 =
1

|x∗−0| + η1 and

y2 =
1

|x∗−1| + η2, where η1 and η2 are i.i.d. realizations of N (0, σ2). We

take x∗ = 1/π (ground truth) and σ = 0.2 in the numerical experiments.

The likelihood is given by P(y |x) ∝ exp(− 1
2σ2

∑1
j=0(yj+1 − 1

|x−j |)
2).

We consider the prior π(x) = χ(0,1)(x) =

{
1 if x ∈ (0, 1),

0 otherwise.

Then the posterior density is given by Bayes’ formula

πy (x) ∝ χ(0,1)(x) exp

(
− 1

2σ2

1∑
j=0

(
yj+1 −

1

|x − j |

)2)
.



Let us visualize the posterior density against the ground truth solution.
(See also files source.py / source.m on the course homepage!)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

posterior density

ground truth

We see that the posterior is localized around the true parameter value
(“ground truth”). Note that in this case, the prior hardly plays any role.

We could take, e.g., the mean or mode of the posterior density as a point
estimate for the unknown location of the point charge. We will discuss
more about Bayesian estimators next week.



What if we modify the problem so that we have access to only one
boundary measurement at x = 1?
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The resulting posterior distribution carries substantially more uncertainty
since we now have less measurement data!

Note that the posterior will generally be high-dimensional, meaning that it
is usually not possible to visually inspect the posterior density.


