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Problem setting
Let (Ω,Γ,P) be a probability space. We consider
the Poisson problem

−∆u(x, ω) = f(x), x ∈ D(ω),

u(x, ω) = 0, x ∈ ∂D(ω),

subject to an uncertain domain D(ω) ⊂ Rd, d ∈
{2, 3}, for almost every ω ∈ Ω.
Domain mapping method: Let Dref ⊂ Rd,
d ∈ {2, 3}, be a fixed reference domain. Define
perturbation field V (·, ω) : Dref → Rd, which we
assume is given explicitly.

Affine and uniform model vs. periodic model
Affine and uniform model

a(x,y) = a(x) +
s∑

i=1

yiψi(x)

Periodic model [2]

a(x,y) = a(x) +
1√
6

s∑
i=1

sin(2πyi)ψi(x)

a(x) = 2, ψi(x) = i−3/2 sin((i− 1
2 )πx), x ∈ [0, 1]

The means and covariances of the affine and periodic model coincide.

Domain parameterization
Let U := [− 1

2 ,
1
2 ]

N and let V : Dref ×U → Rd be
a vector field such that, for x ∈ Dref and y ∈ U ,

V (x,y) := x+
1√
6

∞∑
i=1

sin(2πyi)ψi(x),

with stochastic fluctuations ψi : Dref → Rd. De-
noting the Jacobian matrix of ψi by ψ′

i, the Ja-
cobian matrix J(·,y) : Dref → Rd×d of vector
field V (·,y) is, for x ∈ Dref and y ∈ U ,

J(x,y) := I +
1√
6

∞∑
i=1

sin(2πyi)ψ
′
i(x).

The family of admissible domains {D(y)}y∈U is
parameterized for all y ∈ U by

D(y) := V (Dref ,y),

and the hold-all domain is defined by setting

D :=
⋃
y∈U

D(y).

Main result
For all y ∈ U , we find the transported solution û(·,y) ∈ H1

0 (Dref) in the reference domain such that

û(·,y) = u(V (·,y),y) ⇔ u(·,y) = û(V −1(·,y),y).
Let ûs,h(·,y) := ûh(·, (y1, . . . , ys, 0, 0, . . .)) denote the dimensionally-truncated, conforming first order
finite element approximation of û(·,y) subject to a regular uniform triangulation of Dref . A rank-1
lattice quasi-Monte Carlo (QMC) rule is an equal weight cubature rule over the point set

y(i) = mod( izn , 1)−
1
2 , i ∈ {1, . . . , n},

completely determined by a generating vector z ∈ Ns and the number of cubature nodes n.

Theorem [1]. Let f ∈ C∞(D) be an analytic function. A rank-1 lattice QMC rule can be constructed
by a fast component-by-component (CBC) algorithm such that∥∥∥∥∫

U

û(·,y) dy − 1

n

n∑
i=1

ûs,h(·,y(i))

∥∥∥∥
L1(Dref )

= O(s−2/p+1 + n−1/p + h2),

where the implied coefficient is independent of s, n, and the finite element mesh size h.

Numerical experiments
Let the reference domain be the unit square Dref = (0, 1)2. We consider the domain parameterization

D(y) :=
{
(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 + 1√

6

∑s
i=1 sin(2πyi)ψi(x)

}
, y ∈ [− 1

2 ,
1
2 ]

s,

where only the top edge is uncertain, ∥ψi∥W 1,∞(Dref ) ∝ i−θ+1, s = 100, and θ ∈ {2.1, 2.5, 3.0}.

Left and middle: two realizations of the random domain corresponding to θ = 2.1. Right: estimated QMC cubature
errors corresponding to θ ∈ {2.1, 2.5, 3.0}. Increasing θ results in a faster cubature convergence rate.

Conclusions
We analyzed a class of QMC cubature rules used
to assess the statistical response of the Poisson
problem subject to domain uncertainty. The
domain uncertainty was modeled using periodi-
cally parameterized random variables. A major
advantage of this framework is that it allows us
to develop computationally simple QMC rules
with higher order cubature convergence rates.
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Standing assumptions
We make the following standing assumptions:

(A1) For each y ∈ U , V (·,y) : Dref → Rd is
an invertible, twice continuously differen-
tiable vector field.

(A2) For some C > 0, there holds

∥V (·,y)∥C2(Dref )
≤ C,

∥V −1(·,y)∥C2(D(y))
≤ C

for all y ∈ U .

(A3) There exist constants 0 < σ ≤ 1 ≤ σ <∞
such that

σ ≤ minσ(J(x,y)) ≤ maxσ(J(x,y)) ≤ σ

for all x ∈ Dref and y ∈ U , where
σ(J(x,y)) denotes the set of all singular
values of matrix J(x,y).

(A4) There holds ∥ψi∥W 1,∞(Dref ;Rd) <∞ for all
i ∈ N and

∑∞
i=1 ∥ψi∥W 1,∞(Dref ;Rd) <∞.

(A5) For some p ∈ (0, 1), there holds
∞∑
i=1

∥ψi∥
p
W 1,∞(Dref ;Rd)

<∞.

(A6) ∥ψi∥W 1,∞(Dref ;Rd) ↘ 0 as i→ ∞.

(A7) The reference domain Dref ⊂ Rd is a con-
vex, bounded polyhedron.


