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When computing integrals by hand, one usually employs the fundamental
theorem of calculus.

Theorem

Let f : [a, b]→ R be a continuous function. If F is the antiderivative of f
satisfying F ′ = f , then

b∫
a

f (x) dx = F (b)− F (a).

However, in general there is no guarantee that the antiderivative F of an
arbitrary function f even has a closed form expression. A famous example
is given by f (x) = e−x

2
. The situation becomes worse when the integrand

f itself does not have a nice closed form expression: this is the case for
example when f is the solution of an ODE or a PDE, and we are
interested in computing its moments or marginalizing certain variables.

One can however always resort to numerical integration!
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Quadrature of the circle

Numerical integration is also called quadrature, a term originating from
the Ancient Greeks which refers to the estimation of the area of the unit
disk using pen, ruler, and compass. Below using polygons:

For the 11-sided polygons inscribing and circumscribing the unit disk with
area π, we obtain the estimate 2.97 ≤ π ≤ 3.23.
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Geometrically, for a continuous function f : [a, b]→ R the value of the
integral

b∫
a

f (x) dx

is equal to the signed area between the graph {(x , f (x)) | x ∈ [a, b]} and
the x-axis.

We can obtain quadratures for integrals by partitioning the signed area
using polygons and other shapes whose area we are able to calculate!
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Polynomial interpolation
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Before we tackle quadratures, let’s briefly touch on a closely related topic
of polynomial interpolation.

Let f : [a, b]→ R be a function and let x1, . . . , xn ∈ [a, b] be a set of
mutually distinct nodes: xi 6= xj whenever i 6= j .

It is easy to see that the coordinates (x1, f (x1)), . . . , (xn, f (xn)) can be
interpolated by a unique polynomial Ln−1 with degree ≤ n − 1 such that
f (xi ) = Ln−1(xi ), i ∈ {1, . . . , n}.
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To see this, write Ln−1(x) = cn−1x
n−1 + · · ·+ c1x + c0 with undetermined

coefficients c0, . . . , cn−1 ∈ R. Then the conditions f (xi ) = Ln−1(xi ),
i ∈ {1, . . . , n}, can be used to form the following linear system of
equations: 

c0 + c1x1 + · · ·+ cn−1x
n−1
1 = f (x1)

...

c0 + c1xn + · · ·+ cn−1x
n−1
n = f (xn).

In matrix form, VT[c0, c1, . . . , cn−1]T = [f (x1), . . . , f (xn)]T, where
Vi ,j = x i−1

j is called the Vandermonde matrix.

Now the Vandermonde determinant is

detV = detVT =
∏

1≤i<j≤n
(xj − xi ) 6= 0

whenever xi 6= xj for all i 6= j . Thus, the solution vector [c0, c1, . . . , cn−1]T

of the above system is unique and, in consequence, the interpolating
polynomial of degree n − 1 is unique as well.
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The interpolating polynomial Ln−1 is called the Lagrange interpolating
polynomial and it is given by

Ln−1(x) =
n∑

i=1

f (xi )`i (x),

where the auxiliary polynomials `j are given by

`j(x) =
∏

1≤i≤n
i 6=j

x − xi
xj − xi

for j ∈ {1, . . . , n}

and they satisfy `i (xj) = δi ,j . Here, δi ,j denotes the Kronecker delta
function and it is defined as unity whenever the indices coincide and
vanishing otherwise.
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Newton–Cotes formulae
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Let a = x0 < x1 < · · · < xn ≤ b be an equispaced partition1 of the interval
[a, b], i.e.,

xk = a +
b − a

n
k for k ∈ {0, 1, . . . , n}.

We denote the mesh size by

h =
b − a

n
.

Suppose that f : [a, b]→ R is a continuous function. How to find
approximations of the integral

b∫
a

f (x) dx

using point evaluations of f ?

1The basic tenets behind Newton–Cotes formulae work even with unequally spaced
nodes, but the resulting formulae are a bit nicer when the partition is done in this way.
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Midpoint rule

Let a = x0 < x1 < · · · < xn = b be an
equispaced partition of the interval [a, b].
The signed area of each rectangle is given by

Ri = (xi − xi−1)f

(
xi−1 + xi

2

)
.

We thus obtain the approximation

b∫
a

f (x) dx ≈
n∑

i=1

(xi − xi−1)f

(
xi−1 + xi

2

)

= h
n∑

k=1

f

(
a +

b − a

2n
(2k − 1)

)
.

Figure: The midpoint rule can
be seen as piecewise constant
interpolation at the nodes
(x̃i , f (x̃i )), where x̃i = xi−1+xi

2 .
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Trapezoidal rule

Let a = x0 < x1 < · · · < xn = b be an
equispaced partition of the interval [a, b].
The signed area of each trapezoid is given by

Ti = (xi − xi−1)
f (xi ) + f (xi−1)

2
.

We thus obtain the approximation

b∫
a

f (x) dx ≈
n∑

i=1

(xi − xi−1)
f (xi−1) + f (xi )

2

=
h

2

(
f (x0) + 2

n−1∑
i=1

f (xi ) + f (xn)

)
.

Figure: The trapezoidal rule can
be seen as piecewise linear
interpolation between the nodes
(xi−1, f (xi−1)) and (xi , f (xi )).
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Simpson’s rule

Let a = x0 < x1 < · · · < xn = b be an
equispaced partition of the interval [a, b]
with 2|n. The signed area trapped by each
quadratic is given by

Qi =
h

3
(f (xi−1) + 4f (xi ) + f (xi+1)).

We thus obtain the approximation

b∫
a

f (x)dx

≈ h

3

(
f (x0) + 4f (x1) + 2f (x2) + 4f (x3)

+ · · ·+ 4f (xn−1) + f (xn)
)
.

Figure: Simpson’s rule can be
seen as piecewise quadratic
interpolation between the nodes
(xi−1, f (xi−1)), (xi , f (xi )), and
(xi+1, f (xi+1)) for
i ∈ {1, 3, 5, . . .}.
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Simpson’s 3
8 rule

Let a = x0 < x1 < · · · < xn = b be an
equispaced partition of the interval [a, b]
with 3|n. The signed area trapped by each
cubic is given by

Ci =
3h

8
(f (xi−1)+3f (xi )+3f (xi+1)+f (xi+2)).

We thus obtain the approximation

b∫
a

f (x)dx

≈ 3h

8

(
f (x0) + 3f (x1) + 3f (x2) + 2f (x3)

+ 3f (x4) + 3f (x5) + 2f (x6)

+ · · ·+ f (xn)
)
.

Figure: Simpson’s 3
8 rule can be

seen as piecewise cubic
interpolation between the nodes
(xi−1, f (xi−1)), (xi , f (xi )),
(xi+1, f (xi+1), and
(xi+2, f (xi+2)) for
i ∈ {1, 4, 7, . . .}.
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The rule constructed by using piecewise quartic interpolation is called
Boole’s rule.

General construction of Newton–Cotes rules: Let
a = x1 < x2 < · · · < xn = b be a partition of the interval [a, b]. Let Ln−1

be the unique Lagrange interpolating polynomial of f such that
Ln−1(xi ) = f (xi ) for all i ∈ {1, . . . , n}. Then the area trapped by Ln−1 can
be used to approximate the integral of f over [a, b]:

b∫
a

f (x)dx ≈
b∫

a

Ln−1(x)dx =

b∫
a

n∑
i=1

f (xi )`i (x)dx =
n∑

i=1

wi f (xi ),

where the quadrature weights are given by

wi =

b∫
a

`i (x)dx .

As before, the interval [a, b] can be divided into multiple subpartitions
containing n evaluation points each.
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In general, if your integrand is smooth, then using a Newton–Cotes
formula of higher order yields better accuracy.

Error formulae for the integration rules can be deduced using, e.g., the
error formulae of the Lagrange interpolating polynomial or the Taylor
expansion. For example, for the trapezoidal rule the error is

−(b − a)h2

12
f ′′(ξ), where ξ ∈ [a, b],

and for Simpson’s rule

−(b − a)h4

180
f (4)(ξ), where ξ ∈ [a, b],

provided that f is twice or four times continuously differentiable,
respectively.

Further treatment of Newton–Cotes formulae can be found, e.g.,
in [Davis], [NIST], [Abramowitz and Stegun], or [Wikipedia].
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Gaussian quadratures
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Gaussian quadratures are numerical integration rules that have the highest
possible degree of polynomial exactness for an integration rule consisting
of n nodes.

We shall inspect Gaussian quadrature rules to evaluate integrals of the
form2 ∫

I

W (x)f (x) dx ≈
n∑

i=1

wi f (xi ),

where I ⊂ R is an interval (not necessarily finite!) and W : I → R+ is an
a priori known weight function with finite moments (we’ll define this in a
second).

Here we don’t have control over the choice of the quadrature nodes
a < x1 < x2 < · · · < xn < b. They must be chosen as the roots of an
appropriate orthogonal polynomial in order to ensure optimality of the
quadrature rule. (The weights are deduced deterministically afterwards!)

2We omit the generalization to integrals
∫
R f (x) dλ(x), see, e.g., [Gautschi].
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We’re interested in finding approximations to the integrals∫
I

W (x)f (x) dx ≈
n∑

i=1

wi f (xi ).

Here, the function W is assumed to be known a priori and it has the
following properties.

Definition

Let I ⊂ R be an interval (possibly infinite). We call a mapping
W : I → R a weight function if it has the following properties:

(i) W (x) ≥ 0 for a.e. x ∈ I,

(ii)

∫
I

W (x)xk dx <∞ for all k ∈ N.

We first need to define the relationship between the weight function W
and the nodes and weights ((xi ,wi ))ni=1 of the corresponding quadrature
rule. To this end, we invoke the theory of orthogonal polynomials.
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Let Πn denote the space of all real polynomials with degree ≤ n. We can
endow Πn with the inner product 〈·, ·〉W : Πn × Πn → R defined by setting

〈p, q〉W :=

∫
I

W (x)p(x)q(x)dx , p, q ∈ Πn.

A sequence (pk)∞k=0 of polynomials is called orthogonal with respect to
〈·, ·〉W if

〈pi , pj〉W = 0 for all i 6= j .
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Note that dim Πn = n + 1 since each p ∈ Πn may be written uniquely as

p(x) =
n∑

i=0

cix
i , ci ∈ R.

The sequence (1, x , x2, . . . , xn) is called the monomial basis of Πn.

Now to obtain an orthogonal basis for Πn with respect to the inner
product 〈·, ·〉W , we may use Gram–Schmidt orthogonalization.
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Example

Let I = [−1, 1] and W (x) = 1. By carrying out the Gram–Schmidt
procedure on the monomial basis (1, x , x2, . . . , xn) with respect to 〈·, ·〉W ,
we obtain

p0(x) = 1,

p1(x) = x − 〈p0, x〉W
〈p0, p0〉W

p0(x) = x −
∫ 1
−1 x dx∫ 1
−1 dx

· 1 = x ,

p2(x) = x2 − 〈p0, x
2〉W

〈p0, p0〉W
p0 −

〈p1, x
2〉W

〈p1, p1〉W
p1 = x2 −

∫ 1
−1 x

2 dx∫ 1
−1 dx

−
∫ 1
−1 x

3 dx∫ 1
−1 x

2 dx
x

= x2 − 1
3 ,

p3(x) = x3 − 3
5x , p4(x) = x4 − 6

7x
2 + 3

35 , . . .

This is called the family of (monic) Legendre polynomials.
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Figure: The monic Legendre polynomials P0, P1, P2, P3, and P4.
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Different weight functions and intervals correspond to different families of
orthogonal polynomials.

orthogonal polynomials weight function interval

Legendre polynomials Pk W (x) = 1 I = [−1, 1]

Chebyshev polynomials Tk W (x) = (1− x2)−1/2 I = (−1, 1)
Laguerre polynomials Lk W (x) = e−x I = [0,∞)

Hermite polynomials Hk W (x) = e−x
2 I = (−∞,∞)
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Gaussian quadratures are used to evaluate integrals of the form∫
I

W (x)f (x) dx ≈
n∑

i=1

wi f (xi ).

Let (pk)∞k=0 be a family of orthogonal polynomials with respect to 〈·, ·〉W .
It turns out that the highest possible degree of polynomial exactness is
obtained by taking the roots of pn as the quadratures nodes {xi}ni=1.

Remark. It can be shown that any orthogonal polynomial pn w.r.t. 〈·, ·〉W
has n real, distinct roots that lie in the interval I. We omit the proof of
this statement, but this result can be deduced, e.g., as an application of
the three-term recurrence relation (cf. Appendix).
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Theorem ∫
I

W (x)f (x) dx =
n∑

i=1

wi f (xi ) for all f ∈ Π2n−1,

where x1 < · · · < xn are the roots of pn and the weights are

wi =

∫
I

W (x)`i (x) dx for i ∈ {1, . . . , n},

where

`j(x) =
∏

1≤i≤n
i 6=j

x − xi
xj − xi

for j ∈ {1, . . . , n}.
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Proof. Recall that the Lagrange interpolation polynomial of f ∈ Π2n−1 at
nodes x1 < · · · < xn is given by

Ln−1(x) =
n∑

i=1

f (xi )`i (x),

where

`j(x) =
∏

1≤i≤n
i 6=j

x − xi
xj − xi

for j ∈ {1, . . . , n}

satisfies `i (xj) = δi ,j . Hence Ln−1(xi ) = f (xi ) and Ln−1 ∈ Πn−1.

In consequence, each root of pn ∈ Πn is also a root of f − Ln−1 ∈ Π2n−1.
These polynomials are thus divisible!
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f − Ln−1

pn
= q for some q ∈ Πn−1.

We write this as f (x) = Ln−1(x) + pn(x)q(x).

On the other hand, (pk)n−1
k=0 form a basis for Πn−1. We can express q in

this basis as

q(x) =
n−1∑
i=0

cipi (x) for some ci ∈ R.

Hence

∫
I

W (x)f (x)dx =

∫
I

W (x)Ln−1(x)dx +

=0 since 〈pn,q〉W =0︷ ︸︸ ︷∫
I

W (x)pn(x)q(x)dx

=

∫
I

W (x)Ln−1(x)dx =
n∑

i=1

f (xi )

∫
I

W (x)`i (x) dx .

︸ ︷︷ ︸
=wi
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Gaussian quadrature of a function f in [−1, 1]. For the n-point rule, the quadrature

nodes (xi )
n
i=1 are taken as the roots of the Legendre polynomial Pn. The approximation

of the integral is the signed area trapped by the Lagrange interpolating polynomial of f ,

when interpolation is carried out with respect to the Legendre roots x1 < · · · < xn.
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Efficient generation of Gaussian quadrature rules
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Three-term recurrence of orthogonal polynomials

Gram–Schmidt orthogonalization is an ineffective way to generate
orthogonal polynomials. It turns out that there exists a three-term
recurrence relation

p0(x) = 1,

p1(x) = (x − α1)p0(x),

pk+1(x) = (x − αk+1)pk(x)− βk+1pk−1(x),

where

αk+1 =
〈xpk , pk〉W
〈pk , pk〉W

and βk+1 =
〈pk , pk〉W
〈pk−1, pk−1〉W

.
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Example (Legendre polynomials)

αk = 0 ∀k and βk =
(k − 1)2

4k2 − 8k + 3
, k ≥ 2.

Example (Hermite polynomials)

αk = 0 ∀k and βk =
k − 1

2
, k ≥ 2.

Similar formulae exist for most known families of orthogonal polynomials.
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Let’s assume that the family of orthogonal polynomials (pk)∞k=0 with
respect to 〈·, ·〉W is characterized by the three-term recurrence coefficients
(αk)∞k=1 and (βk)∞k=2.

The following algorithm for the generation of Gaussian quadratures was
introduced in [Golub and Welsch].
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Algorithm (Golub–Welsch)

(i) Construct the tridiagonal n × n matrix

A =


α1

√
β2√

β2 α2
√
β3

√
β3 α3

. . .
. . .

. . .
√
βn√

βn αn

 .

(ii) Fact: The eigenvalues x1, . . . , xn of A are precisely the roots of pn.

(iii) Fact: Let qj = [q1,j , . . . , qn,j ]
T be the normalized eigenvector

corresponding to eigenvalue xj . Then wj = q2
1,j

∫
I
W (x) dx .

(iv) Compute the Gaussian quadrature∫
I

W (x)f (x)dx ≈
n∑

i=1

wi f (xi ).
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Multidimensional integration
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Multidimensional integration over hypercubes [a, b]d

Let ((wi , xi ))ni=1 be the weights and nodes of your favorite univariate
quadrature rule:

b∫
a

f (x)W (x) dx ≈
n∑

i=1

wi f (xi ).

Let g : [a, b]d → R be a d-variate function. Then you can integrate over
the hypercube [a, b]d by composing your favorite quadrature rule over all
axes: ∫

[a,b]d

g(x1, . . . , xd)W (x1) · · ·W (xd) dx1 · · · dxd

≈
n∑

i1=1

· · ·
n∑

id=1

wi1 · · ·widg(xi1 , . . . , xid ).

In fact, you can choose separate quadrature rules corresponding to
different intervals and weights for all axes! Cost: nd function evaluations!
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Multidimensional Monte Carlo integration

Let Ω ⊂ Rd be a bounded domain. We wish to integrate∫
Ω

f (x) dx.

Idea: dx/vol(Ω) is the probability density of the uniform distribution;
hence ∫

Ω

f (x) dx ≈ vol(Ω)

N

N∑
i=1

f (xi ), vol(Ω) =

∫
Ω

dx,

where (xi )
N
i=1 is a random sample of points in Ω.

Convergence rate: O(1/
√
N) according to the Central Limit Theorem.

Independent of dimension d , but extremely slow nonetheless!
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Integration rules for canonical domains

For many canonical domains, there exist various integration formulae in
the literature.
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Optimal Gaussian cubatures, however, remain elusive in the case d > 1
and have been a popular topic of research in the discipline of algebraic
geometry.
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Appendix
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Some consequences of the three-term recurrence

The three-term recurrence on page 35 can be recast in matrix form as

xψ(x) = Sψ(x) + pn(x)en, (1)

where ψ(x) = [p0(x), . . . , pn−1(x)]T, en = [0, 0, . . . , 0, 1]T, and

S =


α1 1
β2 α2 1

β3 α3
. . .

. . .
. . . 1
βn αn

 .
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What happens when you choose x to be equal to one of the roots of
pn in (1)?

Let D = diag(
√
β2, 1,

1√
β3
, 1√

β3β4
, · · · ,

∏n
k=3

1√
βk

). Observe that

S and DSD−1 have the same eigenvalues ([similarity transformation])
and, moreover, that DSD−1 is equal to matrix A on page 38.

Conclude that the eigenvalues of matrix A in the Golub–Welsch
algorithm coincide with the roots of pn. In addition, due to A being
symmetric, the eigenvalues of orthogonal polynomials must be real!
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