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Optimal control problem
We consider the optimal control problem minz∈Z J(z), where

J(z) := R
(
α1

2

∫ T

0

∥uy(·, t)− û(·, t)∥2V dt+
α2

2
∥uy(·, T )− û(·, T )∥2L2(D)︸ ︷︷ ︸

=:Φy(z)

)
+
α3

2

∫ T

0

∥z(·, t)∥2V ′ dt (1)

and α1, α2, α3 > 0 subject to the parametric parabolic partial differential equation (PDE) constraint
∂tu

y(x, t)−∇ · (ay(x, t)∇uy(x, t)) = z(x, t), x ∈ D, t ∈ I,

uy(x, t) = 0, x ∈ ∂D, t ∈ I,

uy(x, 0) = u0(x), x ∈ D

(2)

for all parameters y ∈ [− 1
2 ,

1
2 ]

N =: U , with V := H1
0 (D), V ′ = H−1(D), I := [0, T ], z ∈ L2(V ′; I)

is the control, û ∈ L2(V ; I) is the target state, u0 ∈ L2(D) is a known initial heat distribution,
and D ⊂ Rd, d ∈ {1, 2, 3}, is a bounded Lipschitz domain. The set of admissible controls
∅ ̸= Z ⊆ L2(V ′; I) is either Z = L2(V ′; I) or a bounded, closed, and convex set. We consider

(R1) the risk neutral expected value risk measure R(·) :=
∫
U

·dy;

(R2) the risk averse entropic risk measure R(·) := 1

θ
ln

(∫
U

eθ · dy

)
for some θ > 0.

Random coefficient
The random coefficient ay(x, t) in (2) is assumed
to have affine dependence on the uncertain vari-
ables, and it is modeled by a series expansion

ay(x, t) = a0(x, t) +

∞∑
j=1

yjψj(x, t) (3)

for x ∈ D, y ∈ U , and t ∈ I, where we assume
the following:

(i) for all t ∈ I, it holds that a0(·, t) ∈ L∞(D)
and ψj(·, t) ∈ L∞(D) for all j ≥ 1;

(ii) (supt∈I∥ψj(·, t)∥L∞(D))
∞
j=1 ∈ ℓp for some

p ∈ (0, 1);

(iii) t 7→ ay(x, t) is measurable on I;

(iv) there exist constants amin and amax such
that 0 < amin ≤ ay(x, t) ≤ amax < ∞ for
all x ∈ D, t ∈ I, and y ∈ U .

Optimality system
Let R be the expected value or the entropic risk
measure. A control z∗ is the unique minimizer
of the problem (1)–(2) if and only if it satisfies
the optimality system

∂tu
y(x, t)−∇ · (ay(x, t)∇uy(x, t)) = z∗(x, t),

uy(·, t)|∂D = 0,

uy(x, 0) = u0(x),

−∂tqy(x, t)−∇ · (ay(x, t)∇qy(x, t))
= α1(u

y(x, t)− û(x, t)),

qy(·, t)|∂D = 0,

qy(x, T ) = α2(u
y(x, T )− û(x, T )),

z∗ ∈ Z,
⟨J ′(z∗), z − z∗⟩L2(V ;I),L2(V ′;I) ≥ 0 ∀z ∈ Z,

for x ∈ D, t ∈ I, and y ∈ U .
In the case (R1), the Fréchet derivative of J is

J ′(z) =

∫
U

qy dy + α3(−∆)−1z

and in the case (R2), the Fréchet derivative is

J ′(z) =

∫
U

eθΦ
y(z)qy dy∫

U

eθΦ
y(z) dy

+ α3(−∆)−1z.

Main result
The series (3) is truncated to s terms and the s-dimensional integrals appearing in J and J ′ are
replaced with randomly shifted lattice quasi-Monte Carlo (QMC) rules with n cubature nodes

y(i) = mod( izn +∆, 1)− 1
2 , i ∈ {1, . . . , n},

where z ∈ Ns is a generating vector and ∆ ∈ [0, 1]s is a uniform random shift. The discretized
objective remains convex. Let z∗s,n be the optimal control of the discretized optimization problem.
Theorem [1]. Let R be the expected value or the entropic risk measure. A randomly shifted rank-1
lattice QMC rule can be constructed by a fast component-by-component (CBC) algorithm such that√

E∆∥z∗ − z∗s,n∥2L2(V ′;I) = O(s−2/p+1 + n−min{1/p−1/2,1−δ}) ∀δ > 0,

where the implied coefficient is independent of s and n.

Numerical experiments
Let D = (0, 1)2, T = 1, θ = 10, and let ay be time-independent with ψj such that ∥ψj∥L∞(D) ∝ j−ϑ.
A first order finite element method with mesh size h = 2−5 was used to discretize the PDE spatially
and the implicit Euler method with step size ∆t = 2 · 10−3 was used to solve the resulting semi-
discretized equation. The theoretical rates were assessed using fixed z(x) = 10x1(1− x1)x2(1− x2).

Left and middle: dimension truncation errors of the state uy
s , adjoint solution qys , Ss :=

∫
Us

eθΦ
y
s (z)qys dy, and

Ts :=
∫
Us

eθΦ
y
s (z) dy, Us :=

[
− 1

2
, 1
2

]s. Right: QMC errors of dimensionally-truncated uy
s , qys , Ss, and Ts, s = 100.

We considered recovering the optimal control z∗ given a certain target state û with Z = L2(V ′; I)
(unconstrained setting) and Z = BL2(V ′;I)(2) (constrained setting) with the entropic risk measure.
The reconstruction in the constrained setting with ϑ = 1.3, s = 100, and n = 215 is illustrated below.
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Left: inverse Riesz transform of the reconstructed optimal control z∗ using the entropic risk measure in the constrained
setting. Right: objective function values for each gradient descent iteration in constrained and unconstrained settings.

Conclusions
QMC discretization preserves the convexity of (1) unlike, e.g., sparse grids which have negative weights,
while exhibiting faster-than-Monte Carlo convergence rates independently of the dimension s.
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