The power method

Siltanen/Railo/Kaarnioja

Spring 2018

Applications of matrix computations

Introduction

The spectral properties of operators give valuable insight on various physical phenomena.

Figure: Isospectral drum shapes in 2D [Gordon, Webb, and Wolpert].
Two drums with clamped boundaries give the same sound if they have the same set of (Dirichlet) eigenvalues λ satisfying

$$
-\Delta u=\lambda u \text { in } D,\left.u\right|_{\partial D}=0, \quad D \subset \mathbb{R}^{2} \text { bounded domain. }
$$

Discretization (FDM)

For a collection $\left\{x_{i}\right\}_{i=1}^{N}$ of collocation points within the domain D, form the discretized solution vector $\mathbf{u}=\left[u\left(x_{1}\right), \ldots, u\left(x_{N}\right)\right]^{\mathrm{T}}$.

It is possible to discretize the Laplacian (incl. boundary conditions) as $\Delta u \approx A \mathbf{u}$.

In consequence, the Dirichlet eigenvalue problem can be approximated by the matrix eigenvalue problem $-A \mathbf{u}=\lambda \mathbf{u}$.

Figure: Left: the FDM matrix A of the first drum. Right: the FDM matrix B of the second drum. Both matrices have dimensions 306×306.
>> norm(eig(A)-eig(B))
ans =
$8.8575 \mathrm{e}-12$

Eigenvalues of matrices

Let A be an $n \times n$ matrix. Suppose that the pair $(\lambda, \mathbf{v}) \in \mathbb{C} \times\left(\mathbb{C}^{n} \backslash\{\mathbf{0}\}\right)$ satisfies

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

Then

- λ is called an eigenvalue of matrix A.
- \mathbf{v} is called an eigenvector of matrix A.

You should be familiar with the algebraic approach to solving the eigenvalues of A : by finding the roots of the characteristic polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$.

The eigenvector(s) corresponding to λ can be determined by solving the basis vectors spanning $\operatorname{Ker}(A-\lambda I)$ (usually by Gaussian elimination when computing by hand).

Definition

The matrix A is called diagonalizable if it can be written as

$$
A=P D P^{-1}
$$

for some invertible $n \times n$ matrix P and some diagonal matrix $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

By writing the columns of P as $P=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ the connection to eigenvalues becomes apparent:

$$
A=P D P^{-1} \quad \Leftrightarrow \quad A P=P D
$$

$$
\Leftrightarrow \quad A\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]
$$

$$
\Leftrightarrow \quad\left[A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}\right]=\left[\lambda_{1} \mathbf{v}_{1}, \ldots, \lambda_{n} \mathbf{v}_{n}\right]
$$

$$
\Leftrightarrow \quad A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}, \quad i \in\{1, \ldots, n\}
$$

Some things to keep in mind:

- All real symmetric matrices $A=A^{\mathrm{T}}$ are diagonalizable (and, in fact, their eigenvalues and eigenvectors are real).
- The eigenvectors of a diagonalizable matrix form a basis for \mathbb{R}^{n}.
- The eigenvectors of a real symmetric matrix form an orthogonal basis for \mathbb{R}^{n}.
- Even if the matrix A is not diagonalizable, it still has a Jordan canonical form.

Power method

Let A be a diagonalizable matrix such that $A=P D P^{-1}$ for $P=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. This of course means that

$$
A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}, \quad i \in\{1, \ldots, n\}
$$

and the eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ form a basis for \mathbb{R}^{n}. Let us assume that the eigenvalues are ordered $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$, i.e., the largest eigenvalue in modulus is a simple eigenvalue.

Let us investigate the simple power iteration, where we begin by initializing a random vector $\mathbf{x}^{0} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ and proceed to compute the subsequent iterates as

$$
\begin{aligned}
& \mathbf{x}^{1}=A \mathbf{x}^{0} \\
& \mathbf{x}^{2}=A \mathbf{x}^{1}=A^{2} \mathbf{x}^{0} \\
& \mathbf{x}^{3}=A \mathbf{x}^{2}=A^{3} \mathbf{x}^{0} \\
& \vdots \\
& \mathbf{x}^{k}=A \mathbf{x}^{k-1}=A^{k} \mathbf{x}^{0} .
\end{aligned}
$$

Let us write the arbitrary initial guess $\mathbf{x}^{0} \in \mathbb{R}^{n}$ using the eigenbasis of A as $\mathbf{x}^{0}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}$. In addition, we assume that $c_{1} \neq 0$, that is, the initial guess contains a nonzero component in the direction of the dominant eigenvalue. ${ }^{1}$

Now $A^{k}=P D^{k} P^{-1}$, where $D^{k}=\operatorname{diag}\left(\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}\right)$.

[^0]Then

$$
\begin{array}{lr}
A^{k} \mathbf{x}^{0}=P D^{k} P^{-1}\left(c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}\right) & \left(P^{-1} \mathbf{v}_{i}=\mathbf{e}_{i}\right) \\
=P D^{k}\left(c_{1} \mathbf{e}_{1}+\cdots+c_{n} \mathbf{e}_{n}\right)=P\left(c_{1} \lambda_{1}^{k} \mathbf{e}_{1}+\cdots+c_{n} \lambda_{n}^{k} \mathbf{e}_{n}\right) & \left(P \mathbf{e}_{i}=\mathbf{v}_{i}\right) \\
=\sum_{i=1}^{n} c_{i} \lambda_{i}^{k} \mathbf{v}_{i}=c_{1} \lambda_{1}^{k} \mathbf{v}_{1}+\sum_{i=2}^{n} c_{i} \lambda_{i}^{k} \mathbf{v}_{i}=\lambda_{1}^{k}\left(c_{1} \mathbf{v}_{1}+\sum_{i=2}^{n} c_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} \mathbf{v}_{i}\right) .
\end{array}
$$

Hence

$$
\frac{A^{k} \mathbf{x}^{0}}{\lambda_{1}^{k}}=c_{1} \mathbf{v}_{1}+\sum_{i=2}^{n} c_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} \mathbf{v}_{i} \xrightarrow{k \rightarrow \infty} c_{1} \mathbf{v}_{1}
$$

with convergence rate $\mathcal{O}\left(\left|\lambda_{2} / \lambda_{1}\right|^{k}\right)$ as $k \rightarrow \infty$. 2
Note that once the eigenvector \mathbf{v}_{1} is (approximately) known, the corresponding eigenvalue can be computed as

$$
A \mathbf{v}_{1}=\lambda_{1} \mathbf{v}_{1} \quad \Rightarrow \quad \lambda_{1}=\frac{\mathbf{v}_{1}^{\mathrm{T}} A \mathbf{v}_{1}}{\mathbf{v}_{1}^{\mathrm{T}} \mathbf{v}_{1}}
$$

[^1]
Power method

Algorithm
Start with an initial guess $\mathbf{x}^{0} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$. for $k=1,2, \ldots$ do

Compute $\mathbf{y}=A \mathbf{x}^{k-1}$;
Set $\mathbf{x}^{k}=\mathbf{y} /\|\mathbf{y}\|$;
Set $\lambda_{k}=\left(\mathbf{x}^{k}\right)^{\mathrm{T}} A \mathbf{x}^{k}$;
end for
The algorithm can be terminated once, e.g., $\left\|A \mathbf{x}^{k}-\lambda_{k} \mathbf{x}^{k}\right\|<$ threshold.
If the algorithm converges, then $\mathbf{x}=\lim _{k \rightarrow \infty} \mathbf{x}_{k}$ and $\lambda=\lim _{k \rightarrow \infty} \lambda_{k}$ satisfy $A \mathbf{x}=\lambda \mathbf{x}$, where λ is the largest eigenvalue of matrix A in modulus.

In applications involving discrete time Markov chains, the dominant eigenvector has a natural interpretation as a stationary probability distribution.

In part II, we will discuss Markov chains and their properties.

Bibliography

R. Gordon, D. Webb, and S. Wolpert. Isospectral plane domains and surfaces via Riemannian orbifolds. Inventiones Mathematicae 110(1):1-22, 1992. DOI:10.1007/BF01231320
(1) G. Golub and C. Van Loan. Matrix Computations, 2nd edition, The Johns Hopkins University Press, 1989.
R R. A. Horn and C. R. Johnson. Matrix Analysis, 1st paperback edition, Cambridge University Press, 1985.
囯 D. Poole. Linear Algebra: A Modern Introduction. Thomson Brooks/Cole, 2005.

[^0]: ${ }^{1}$ This is not a restricting assumption since in practice the initial guess is generated randomly. In particular, this means that the probability that $c_{1}=0$ is zero.

[^1]: ${ }^{2}$ Landau's big-O notation: $f(x)=\mathcal{O}(g(x))($ as $x \rightarrow \infty) \Leftrightarrow$ for some constant $C>0$, $|f(x)| \leq C|g(x)|$ for sufficiently large $x \gg 0$. What is constant C here? :)

