
Statistics for Data Science Exercise 13
Wintersemester 2023/24
Please complete these problems before the exercise session on
Tuesday 30 January, 2024, 8:30. Please be prepared to present
your solutions to any problems that you completed successfully.

1. Let y ∈ R2 the measurement, x ∈ R the unknown, and

y =

(
2
1

)
x+ η, η ∼ N (0, γ2I2),

where I2 ∈ R2×2 is an identity matrix and γ > 0. Suppose that the prior
distribution is given by x ∼ N (0, 2), with x and η assumed to be independent.
What is the posterior distribution if we observe y = (1, 2)T? What is the
posterior variance? What happens to the posterior distribution and variance
under decreasing noise (γ ↓ 0)?

2–3. (This task is worth 2 points.) Let M ∈ Rd×d and H ∈ Rk×d. Suppose that
we have a sequence of measurements {yj}j≥1 ⊂ Rk which correspond to a
sequence of unknown states {xj}j≥1 ⊂ Rd.

(a) Suppose that the states obey an evolution model

xj+1 = Mxj + ξj+1, ξj+1
i.i.d.∼ N (0,Σ), (1)

where Σ ∈ Rd×d is a symmetric and positive (semi)definite covariance
matrix. If xj ∼ N (mj, Cj), where mj ∈ Rd and Cj ∈ Rd×d is symmetric
and positive (semi)definite, what is the distribution of xj+1?

(b) Suppose that we have an observation model

yj+1 = Hxj+1 + ηj+1, ηj+1
i.i.d.∼ N (0,Γ), (2)

where Γ ∈ Rk×k is a symmetric and positive (semi)definite covariance
matrix. The measurement yj+1 is given, with xj+1 and ηj+1 assumed to
be independent. Using the distribution you obtained in part (a) as the
prior for xj+1, what is the posterior distribution of xj+1|yj+1?

(c) Consider the evolution-observation model (1)–(2) and suppose that we
are interested in finding the probability distribution of xj+1|y1, . . . , yj+1

(i.e., we wish to estimate the state at some future time step j + 1 given
measurements at all previous time steps 1, 2, . . . , j + 1). Consider the
following updating scheme:

(i) Set j = 0 and initialize x0 ∼ N (m0, C0) using some known mean
m0 ∈ Rd and symmetric, positive (semi)definite covariance C0 ∈
Rd×d.

(ii) (Prediction) Define xj+1 using the evolution model (1). Then xj+1 ∼
N (m̂j, Ĉj), where m̂j and Ĉj are the mean and covariance you derived
in part (a).

The exercises continue on the next page!



(iii) (Correction) Using xj+1 ∼ N (m̂j, Ĉj) from step (ii) as the prior,
we can obtain the posterior xj+1|y1, . . . , yj+1 ∼ N (mj+1, Cj+1) from
the observation model (2), where mj+1 and Cj+1 are the mean and
covariance you derived in part (b).

(iv) Set j = j + 1 and return to step (ii).

This algorithm is known as the Kalman filter. It produces the so-called fil-
tering distributions xj+1|y1, . . . , yj+1 ∼ N (mj+1, Cj+1) for j = 0, 1, 2, . . .

Your task is to implement this algorithm numerically for the following
model problem:

We wish to track the state xk :=

[
pk
vk

]
∈ R2 of a moving particle. The first

component pk corresponds to the position of the particle while the second
component vk is its velocity at time k = 0, 1, 2, . . .. You may assume that

you know the initial state of the particle perfectly: x0 = E[x0] =

[
0
0

]
∈ R2

and C0 =

[
0 0
0 0

]
∈ R2×2. The evolution model for the particle is given

by M =

[
1 ∆t
0 1

]
∈ R2×2, with time step ∆t = 0.01, and the innovation

term is given by Σ =

[
1
4
(∆t)4 1

2
(∆t)3

1
2
(∆t)3 (∆t)2

]
∈ R2×2. Meanwhile, we only

measure the location of the particle so the observation model is given by
H =

[
1 0

]
∈ R1×2 and the observational noise variance is assumed to

be Γ = [1] ∈ R1×1.

Implement the Kalman filter for this model problem and plot the filtered
positions (tk,E[pk|y1, . . . , yk])2000k=1 and velocities (tk,E[vk|y1, . . . , yk])2000k=1 as
a function of time tk = k∆t, k = 1, . . . , 2000. To simulate the noisy mea-
surements, you may assume that the true trajectory of the particle is
given by the function x(t) = 0.1(t2 − t) for t ∈ [0, 20], and the mea-
surements are given by yk = x(tk) + ηk, where ηk ∼ N (0,Γ) is additive
i.i.d. noise for k = 1, . . . , 2000.

Hint: Since all intermediate distributions in the Kalman filter algorithm are
Gaussian (as long as the initial distribution for x0 is Gaussian), from a compu-
tational point of view, we only need to keep track of the means and covariances
using the update formulae you derived in parts (a) and (b).

4. Solve problem 3(c) using the ensemble Kalman filter with ensemble size N =
100. The covariance Σ of the innovation term in problem 3(c) is positive
semidefinite. In order to avoid problems sampling from the distributionN (0,Σ),

you can instead use, e.g., Σ =

[
1
4
(∆t)4 + 10−10 1

2
(∆t)3

1
2
(∆t)3 (∆t)2 + 10−10

]
as a quick and

dirty workaround. Note also that the prior distribution x0 ∼ N
([

0
0

]
,

[
0 0
0 0

])
is degenerate, so you should use the initial ensemble x

(j)
0 =

[
0
0

]
for j =

1, . . . , N .


