
Statistics for Data Science Exercise 14
Wintersemester 2023/24
Please complete these problems before the exercise session on
Tuesday 6 February, 2024, 8:30. Please be prepared to present
your solutions to any problems that you completed successfully.

1. Consider a bivariate Gaussian distribution(
x1

x2

)
∼ N

((
0
0

)
,

(
1 p
p 1

))
.

(a) Write a Gibbs sampler for this distribution. Based on the generated sam-
ple, what are the expected value of (x1, x2)

T and the marginal standard
deviations of x1 and x2?

(b) Repeat part (a) for parameter values p = 0.5, 0.9, 0.99, and 0.999. How
does the degree of correlation between x1 and x2 affect the performance
of the Gibbs sampler?

2. Consider the mathematical model

y =

(
x2
1 + x2

2

x2

)
+ η,

where y ∈ R2 is the measurement and x = (x1, x2)
T ∈ R2 is the unknown. Let

us set the prior x = z · 1[−4,4]2(z), where z ∼ N ((0, 0)T, I),

1B(z) =

{
1, z ∈ B,

0, otherwise,

and η ∼ N (0, δ2I) with δ = 0.1. Suppose we are given the observation y =
(7,−2)T. Implement MCMC with the Metropolis–Hastings kernel

xk+1 ∼
√

1− β2 · xk + βξ, ξ ∼ N (0, I),

for different values of β ∈ (0, 1) to sample the posterior density. For each value
of β produce 10 000 samples and plot them. What do you notice? Also compute
for each β the acceptance ratio, i.e., the ratio between accepted jumps and the
total length of the chain. Use the origin as initial value.

Using the best choice of β, compute the posterior mean, i.e., the conditional
mean estimator

x̂CM =

∫
R2

xf(x|y) dx.

The exercises continue on the next page!



3–4. (This task is worth 2 points.) The random walk Metropolis algorithm scales
poorly with increasing dimension.† Meanwhile, the single component Gibbs
sampler is computationally expensive for high-dimensional problems. A sur-
prisingly effective alternative is the so-called Metropolis-within-Gibbs algo-
rithm, which combines the powerful Gibbs sampler with the computationally
inexpensive Metropolis algorithm. The algorithm to draw a sample from the
d-dimensional probability density function f can be described as follows:

1. Choose the initial value x(0) ∈ Rd and set k = 0.

2. Draw the next sample as follows:

(i) Set x = x(k) and j = 1.

(ii) Draw t ∈ R from the one-dimensional distribution

f(t|y1, . . . , yj−1, xj+1, . . . , xd) ∝ f(y1, . . . , yj−1, t, xj+1, . . . , xd)

by performing one step of the Metropolis algorithm and set yj = t.

(iii) If j = d, set y = (y1, . . . , yd) and terminate the inner loop. Otherwise,
set j ← j + 1 and return to step (ii).

3. Set x(k+1) = y, increase k ← k + 1 and return to step 2.

Suppose that we are interested in estimating a signal g : [0, 1]→ R from noisy,
blurred observations modeled by

yi = y(si) =

∫ 1

0

K(si, t)g(t) dt+ εi, i ∈ {1, . . . , k}, (1)

where si =
i
k
− 1

2k
for i ∈ {1, . . . , k}, the blurring kernel is

K(s, t) = exp

(
− 1

2 · 0.052
(s− t)2

)
,

and we have i.i.d. Gaussian measurement noise εi ∼ N (0, σ2) with σ = 10−3.
As we discussed during last week’s lecture, the integral equation (1) can be
discretized using the midpoint rule with points tj =

j
d
− 1

2d
, j ∈ {1, . . . , d}, to

obtain the linear measurement model

y = Ax+ ε, (2)

where y = [y1, . . . , yk]
T ∈ Rk is the measurement, A =

(
1
d
K(si, tj)

)
i=1,...,k
j=1,...,d

∈

Rk×d is the system matrix, and x = [g(t1), . . . , g(td)]
T ∈ Rd is the unknown.

Download the file signal.mat from the course website. The file contains the
objects y, A, and t corresponding to the noisy, blurred signal y, the system
matrix A, and the vector t, respectively. The file can be imported in Python
with the command
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†The preconditioned Crank–Nicolson (pCN) method considered in task 2 can be used to carry
out dimension-robust sampling, but it requires careful tuning of the free parameter β ∈ (0, 1).



data = scipy.io.loadmat(’signal.mat’)

and you can access the objects by calling data[’y’], data[’A’], and data[’t’].
Note that k = d = 100.

Suppose that we know a priori that the true signal x corresponds to a piecewise
constant function g : [0, 1] → R. A reasonable choice for the prior would then
be the so-called anisotropic total variation prior

f(x) ∝ exp

(
− λ

d∑
k=1

|xk+1 − xk|
)
, λ > 0, (3)

where we assume periodic boundary conditions, i.e., xd+1 = x1.

Your task is as follows:

Write down the posterior density f(x|y) for the unknown parameter x ∈ Rd

in (2) using the prior (3) with λ = 100. Use the Metropolis-within-Gibbs algo-
rithm with random walk Metropolis step size γ = 0.05 to draw a sample of size
N = 104 from the posterior density, and approximate the CM estimator x̂CM of
the unknown parameter x by computing the sample average. Finally, visualize
the approximate CM estimator you obtained by plotting it as a function of t.

Hint: Your reconstruction should look a bit like the boxcar function 1[0.3,0.7], which
was the function used to generate the measurement data.


