Wintersemester 2023/24
Please complete these problems before the exercise session on
Tuesday 7 November, 2023, 8:30. Please be prepared to present your solutions to any problems that you completed successfully.

1. Let X be a continuous real-valued random variable with the probability density function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{4 x e^{-x^{2}}}{\left(1+\mathrm{e}^{-x^{2}}\right)^{2}} & \text { if } x \geq 0\end{cases}
$$

Use inverse transform sampling to draw a sample from this distribution. Use sample size $n=10^{5}$ and visualize the sample as a histogram. You can validate your results by plotting the probability density function f alongside your (appropriately normalized) histogram.
Hint: In Python, you can use numpy.random. uniform (a, b, size=) to draw a sample containing n entries from the uniform distribution $\mathcal{U}(a, b)$.
2. Let $X \sim \mathcal{N}(0,1)$ and define $Y=g(X)$, where $g(x)=\arctan x$ for $x \in \mathbb{R}$.
(a) Draw a sample $X \sim \mathcal{N}(0,1)$ of size $n=10^{5}$ and plot $g(X)$ as a histogram. That is, apply the mapping g directly to the sample drawn from the normal distribution.
(b) Derive the probability density function of random variable Y. Plot this alongside the histogram you obtained in part (a).

Hint: In Python, you can use numpy.random.normal(m,sigma, size=n) to draw a sample containing n entries from the Gaussian distribution $\mathcal{N}\left(m\right.$, sigma $\left.{ }^{2}\right)$.
3. Let $X, Y \sim \mathcal{U}(0,1)$ be independent random variables and define $Z=\max \left(X, Y^{2}\right)$.
(a) Derive the probability density function of Z.
(b) Draw a sample of size $n=10^{5}$ from the probability distribution of Z and visualize the sample as a histogram. Plot the probability density you obtained in part (a) alongside the histogram.
4. Let $\left(X_{1}, X_{2}\right)$ be a joint random variable and let us assume that

$$
\left(\log X_{1}, \log X_{2}\right) \sim \mathcal{N}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\right)
$$

Derive the joint probability density of $\left(X_{1}, X_{2}\right)$.
Hint: Recall that the bivariate Gaussian distribution $Y \sim \mathcal{N}(\mu, C)$ for vector $\mu \in \mathbb{R}^{2}$ and a symmetric, positive definite matrix $C \in \mathbb{R}^{2 \times 2}$ has the probability density function

$$
f_{Y}(y)=\frac{1}{2 \pi \sqrt{\operatorname{det} C}} \exp \left(-\frac{1}{2}(y-\mu)^{\mathrm{T}} C^{-1}(y-\mu)\right), \quad y \in \mathbb{R}^{2}
$$

