Statistics for Data Science Wintersemester 2023/24 Please complete these problems before the exercise session on Tuesday 21 November, 2023, 8:30. Please be prepared to present your solutions to any problems that you completed successfully.

1. Let $X \sim \mathcal{N}(\mu, C)$, where $\mu \in \mathbb{R}^d$ and $C \in \mathbb{R}^{d \times d}$ is a symmetric, positive definite matrix for $d \in \mathbb{N}$. Show that

$$\mathbb{E}[\|X - \mu\|^2] = \operatorname{tr}(C),$$

where $\|\cdot\|$ is the Euclidean norm in \mathbb{R}^d and $\operatorname{tr}(C)$ is the matrix trace, defined as the sum over the diagonal elements of matrix C.

2. Recall that the Bernoulli random variable $X \sim \text{Ber}(p)$ with parameter $p \in (0, 1)$ has only two possible outcomes: 1 ("success") with probability p and 0 ("failure") with probability 1 - p. The probability mass function of X is

$$p_X(x) = \begin{cases} 1-p & \text{if } x = 0, \\ p & \text{if } x = 1. \end{cases}$$

Let $X_1, \ldots, X_n \sim \text{Ber}(p)$ be i.i.d. random variables and let H be a random variable denoting the number of successful trials, i.e.,

$$H = \sum_{k=1}^{n} X_k.$$

Let $n = 10^3$ and $p = \frac{1}{3}$.

- (a) Visualize the distribution of H as a histogram. To achieve this, you can generate, e.g., 10^3 different realizations of H.[†]
- (b) Use the central limit theorem to approximate H using a Gaussian distribution. Plot this against the (appropriately normalized) histogram you derived in part (a) to validate your answer.
- (c) Use the Gaussian distribution you derived in part (b) to find an interval \mathcal{I} such that

$$\mathbb{P}(H \in \mathcal{I}) \approx 0.95$$

3. Let $X \sim \mathcal{U}([0,1]^d)$ be a uniform random variable in the hypercube $[0,1]^d$ with $d \geq 1$. Recall that this distribution has the probability density function

$$f_X(x) = \begin{cases} 1 & \text{if } x \in [0,1]^d, \\ 0 & \text{if } x \in \mathbb{R}^d \setminus [0,1]^d. \end{cases}$$

[†]To draw a sample from Ber(p), you may use, e.g., numpy.random.binomial(1,p=p,size=n) in Python.

Let $X_1, \ldots, X_n \sim \mathcal{U}([0,1]^d)$ be i.i.d. random variables and let $g: [0,1]^d \to \mathbb{R}$ be a function. Then it is a consequence of the (strong) law of large numbers that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} g(X_i) = \int_{[0,1]^d} g(x) \, \mathrm{d}x \quad \text{almost surely.}$$

Let $g(x) = \cos\left(\sum_{i=1}^{d} x_i\right)$ for $x = (x_1, \ldots, x_d) \in [0, 1]^d$. Estimate the value of the high-dimensional integral

$$I_d(g) = \int_{[0,1]^d} g(x) \,\mathrm{d}x$$

by using sample averages $Q_{d,n}(g) = \frac{1}{n} \sum_{i=1}^{n} g(X_i)$, where $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{U}([0,1]^d)$ is a random sample. This method of numerical integration is known as the *Monte Carlo method*.

In this case, the exact value of the integral is $I_d(g) = 2^d \cos(\frac{d}{2})(\sin \frac{1}{2})^d$ (you do not need to prove this). Compute the Monte Carlo numerical integration error $|I_d(g) - Q_{d,n}(g)|$ for sample sizes $n = 2^k$, $k = 0, 1, 2, \ldots, 20$.[†] Try out several values for the dimension d, for example, $d \in \{10, 100, 1000\}$. What convergence rate do you observe for the numerical integration error as a function of n? Does increasing the dimension d affect the convergence rate?

4. Let $k \in \mathbb{N}$ and consider the function $f_k \colon \mathbb{R} \to (0, \infty)$,

$$f_k(x) = \begin{cases} 0 & \text{if } x < 1, \\ \frac{k}{x^{k+1}} & \text{if } x \ge 1. \end{cases}$$
(1)

- (a) Show that f_k is a probability density function for each $k \in \mathbb{N}$.
- (b) Let X be a random variable with probability density function (1) for $k \in \mathbb{N}$. Show that the moments $\mathbb{E}[X^{\ell}]$ exist for $0 \leq \ell \leq k 1$ and do not exist for $\ell \geq k$.
- (c) Let X_1, \ldots, X_n be i.i.d. random variables with the probability density function (1). What can you say about the convergence of the sample average $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ to $\mathbb{E}[X]$ for different values of k?

[†]If $n = 2^{20}$ takes too long, you can also compute the errors up to, say, $n = 2^{17}$.