
Statistics for Data Science Bonus exercises
Wintersemester 2024/25
These exercises will not be graded and do not need to be returned

1. If Ω is a finite, non-empty set, the uniform probability measure P on Ω is the
probability measure defined by

P(A) =
|A|
|Ω|

for all events A. Check that P is indeed a probability measure.

2. An urn contains 40 balls enumerated from 1 to 40. In a lottery, 6 balls are
drawn without replacement from the urn. Tickets bearing the correct sequence
of numbers, up to permutation of the numbers, win a T-shirt, while the ticket
with the correct ordered sequence wins a car.

(a) Compute the probability of winning a T-shirt.

(b) Compute the probability of winning a car.

3. John claims: “If X is a continuous random variable with PDF fX , then for all
x ∈ R,

P(X = x) =

∫ x

x

fX(y) dy = 0.

Therefore, for any event A,

P(X ∈ A) = P
( ⋃

x∈A

{X = x}
)

=
∑
x∈A

P(X = x) =
∑
x∈A

0 = 0,

where we used the fact that the sets {X = x} are disjoint for different x.”
What do you think of John’s claim? Carefully justify your answer.

4. For a real-valued random variable X, we say that m ∈ R is a median for X if
P(X ≥ m) ≥ 1/2 and P(X ≤ m) ≥ 1/2.

(a) If X is a continuous random variable with CDF F , show that a median
is provided by F−1(1/2).

(b) Compute a median for X when X is a uniform random variable. Do
the same with a Gaussian random variable and an exponential random
variable.

5. Let R2 ∼ Exp(1/2) and θ ∼ U(0, 2π). We assume that R and θ are inde-
pendent. Show that X := R cos(θ) and Y := R sin(θ) are two i.i.d. standard
normal random variables.

6. We consider the function f : R→ R+ given by

f(x) =
1

π(1 + x2)
, x ∈ R.



(a) Show that f is a PDF.

(b) Let X be a random variable with PDF f . We say that X is a Cauchy
random variable. Show that X is not integrable.

7. Let X ∼ U(0, 1) and define the function f(x) =
10

3
x3/2 for x ∈ [0, 1].

(a) Calculate E[f(X)] and Var(f(X)) by hand.

(b) Write pseudocode to demonstrate how you would approximate the ex-
pected value E[f(X)] using the Monte Carlo method.

(c) Determine the sample size n required for the Monte Carlo method to
ensure that the root-mean-square error for estimating E[f(X)] is less
than 10−2.

8. Assume that X1, X2, . . . , Xn ∼ Ber(p) are i.i.d. with some unknown parameter
p ∈ (0, 1). Solve the maximum likelihood estimator of p and show that it
converges to the true, but unknown, value of the parameter p as the sample
size n→∞.

9. Let X ∼ N (1, 3) and f(x) = 1 + 2x+ x2.

(a) Calculate E[f(X)] and Var[f(X)] by hand.

(b) Implement the Monte Carlo method to approximate the expected value
of f , i.e.,

E[f(X)] ≈ fM :=
1

M

M∑
i=1

f(xi), xi
i.i.d.∼ N (1, 3).

Let M = 1, 2, 4, 8, . . . , 256. For each M , compute N = 10000 simulations
(realizations) of fM . For each M , calculate the mean and the variance of
fM over the N rounds. Visualize your results by plotting the mean and
variance of fM over the N rounds as functions of M in two separate plots.

10. Let x1, . . . , xn be i.i.d. copies of the random variable x ∼ N (µ, σ2) with µ = 10,
σ = 5, and sample size n = 50.

Generate 100 different random samples x1, . . . , xn using a random number
generator. Then, for each sample, compute a 95% confidence interval of the
mean. For the simulation of the confidence intervals, assume that the popu-
lation mean µ and population variance σ2 used to generate the samples are
unknown. How many confidence intervals contain the true population param-
eter µ = 10 in your experiments?

11. Opinion polls are often conducted before parliamentary elections. In an up-
coming election, two polls were conducted. In poll 1, the sample size was 1000
and 200 out of the 1000 eligible voters reported that they support the party
Statistocrats. In poll 2, which was conducted later, the sample size was 1120
and 200 out of the 1120 eligible voters reported that they support Statisto-
crats. Based on these polls, can one conclude that support of Statistocrats has
decreased?



12. (a) Give the general statistical assumptions needed for applying the Wilcoxon
one sample signed rank test.

(b) Give the null hypothesis and the two sided alternative hypothesis of the
Wilcoxon one sample signed rank test.

(c) Give the general statistical assumptions needed for applying the one sam-
ple sign test.

(d) Give the null hypothesis and the two sided alternative hypothesis of the
one sample sign test.

(e) Compare the statistical assumptions of the Wilcoxon one sample signed
rank test and the one sample sign test. Which one of these tests has
milder assumptions?

13. Explain how you would visualize the following data sets.

(a) The eye colors of students attending the Statistics for Data Science course.
(Draw an example.)

(b) The heights of male students attending the Statistics for Data Science
course. (Draw an example.)

(c) The relationship between the heights and shoe sizes of students attending
the Statistics for Data Science course. (Draw an example.)

(d) The proportions of seats by political parties in the German parliament.
(Draw an example.)

(e) The proportion of faulty products obtained from a manufacturing process.
(Draw an example.)

14. Consider independent and identically distributed (i.i.d.) bivariate observations
(x1, y1), (x2, y2), . . . , (xn, yn).

(a) What type of dependence can be measured using the Pearson correlation
coefficient?

(b) What type of dependence can be measured using the Spearman correla-
tion coefficient?

(c) Give an example of a dependence type that can neither be detected using
Pearson correlation coefficient nor using Spearman correlation coefficient,
but that can be detected from a scatter plot.

15. You are working as an expert in a group assisting policymakers. Policymakers
believe that the best way to reduce public healthcare costs is to lower the
weight of people. BMI (body mass index) under 18.5 is considered underweight,
18.5–25 is normal weight, 25–30 is overweight, and above 30 is obese. GHS
(general health score) measures an individual’s general health status. The value
10 indicates perfect health, and if the value is above 30, this indicates the
individual has severe health problems. The BMI and GHS measurement results
of seven individuals are shown below.



BMI (x) GHS (y)
27 10
40 65
15 70
18 45
37 40
23 10
25 9

(a) Plot a scatter plot of the dataset.

(b) Calculate the Pearson correlation coefficient for the dataset.

(c) Calculate the Spearman correlation coefficient for the dataset.

(d) Describe the relationship between variables x and y and interpret the
results in (a), (b), and (c).

(e) Policymakers believe that the best way to reduce public healthcare costs
is to lower the weight of people. Based on this dataset alone, do you agree
with the policymakers? Justify your answer.

16. Consider the multivariate linear regression model

yi = b0 +BTxi + εi, i ∈ {1, . . . , n},

where the elements of the 2 × 1 vector b0 and 4 × 2 regression matrix B are
unknown constants and the expected value of the residuals εi is E[εi] = 0.

(a) What does the variance inflation factor (VIF) measure?

(b) Give the definition of VIF for the explanatory variable (xi)3 and explain
how it is calculated.

(c) Explain how VIF can be used in selecting explanatory variables.

17. Let x, y, η ∈ R2. Consider the Bayesian inverse problem

y =

(
1 0
0 0

)
x+ η

with additive noise η ∼ N (0, γ2I2), where I2 ∈ R2×2 is an identity matrix.
Suppose that the prior distribution is given by x ∼ N (0, I2). What is the

posterior distribution of x|y if we observe y =
(
1 2

)T
? What is the pos-

terior covariance? What happens to the posterior distribution and posterior
covariance under decreasing noise (γ ↓ 0)?

18. Assume that Z0 ∼ N (1, 1) and Z1 is given as

Z1 = Z0 + Σ,

where Σ ∼ N (0, 1), and the observation model is

Y = Z1 + Ξ,

where Ξ ∼ N (0, 1). The random variables Z0, Σ, and Ξ are assumed to be
independent.



(a) Forecast step: What is the distribution of Z1?

(b) Filtering step: What is the distribution of Z1 conditioned on Y = 1?

(c) For the ensemble Kalman filter with perturbed observations, the analysis
is obtained using the non-deterministic coupling

Ẑa = Z1 − α(Z1 + ξ − yobs),

where ξ ∼ N (0, 1) and yobs = 1. Find the value of α ∈ R such that
Ẑa has the same distribution as Z1|Y = 1. Validate your choice of α
by computing explicitly the mean and variance of Ẑa and compare these
with the mean and variance of Z1|Y = 1.

19. Let x0 ∼ N (m0, C) and consider the nonlinear dynamics

xj+1 = Ψ(xj) + ξj+1, j = 0, 1, 2, . . . ,

where ξj+1
i.i.d.∼ N (0,Σ), and the measurement model

yj+1 = Hxj+1 + ηj+1, j = 0, 1, 2, . . . ,

where ηj+1
i.i.d.∼ N (0,Γ). The random variables x, ξ, and η are assumed to be

independent.

3DVAR filtering is based on the following updating scheme:

Prediction:
m̂j+1 = Ψ(mj), j = 0, 1, 2, . . . .

Correction:

mj+1 = (I −KH)m̂j+1 +Kyj+1, j = 0, 1, 2, . . . ,

where K = CHT(HCHT + Γ)−1 is the Kalman gain matrix.
(a) Show that

mj+1 = argmin
v

{
1
2
(yj+1−Hv)TΓ−1(yj+1−Hv)+ 1

2
(v−m̂j+1)

TC−1(v−m̂j+1)
}
.

(b) If Ψ is linear, i.e., Ψ(x) = Mx for some matrix M , how is the expression
for mj+1 related to the Kalman filter?

20. The random walk Metropolis algorithm scales poorly with increasing dimen-
sion.† Meanwhile, the single component Gibbs sampler is computationally ex-
pensive for high-dimensional problems. A surprisingly effective alternative is
the so-called Metropolis-within-Gibbs algorithm, which combines the powerful
Gibbs sampler with the computationally inexpensive Metropolis algorithm.
The algorithm to draw a sample from the d-dimensional probability density
function f can be described as follows:

†The preconditioned Crank–Nicolson (pCN) method can be used to carry out dimension-robust
sampling, but it requires careful tuning of the free parameter β ∈ (0, 1).



1. Choose the initial value x(0) ∈ Rd and set k = 0.

2. Draw the next sample as follows:

(i) Set x = x(k) and j = 1.

(ii) Draw t ∈ R from the one-dimensional distribution

f(t|y1, . . . , yj−1, xj+1, . . . , xd) ∝ f(y1, . . . , yj−1, t, xj+1, . . . , xd)

by performing one step of the Metropolis algorithm and set yj = t.

(iii) If j = d, set y = (y1, . . . , yd) and terminate the inner loop. Otherwise,
set j ← j + 1 and return to step (ii).

3. Set x(k+1) = y, increase k ← k + 1 and return to step 2.

Suppose that we are interested in estimating a signal g : [0, 1]→ R from noisy,
blurred observations modeled by

yi = y(si) =

∫ 1

0

K(si, t)g(t) dt+ εi, i ∈ {1, . . . , k}, (1)

where si =
i
k
− 1

2k
for i ∈ {1, . . . , k}, the blurring kernel is

K(s, t) = exp

(
− 1

2 · 0.052
(s− t)2

)
,

and we have i.i.d. Gaussian measurement noise εi ∼ N (0, σ2) with σ = 10−3.
As discussed during the lectures, the integral equation (1) can be discretized
using the midpoint rule with points tj =

j
d
− 1

2d
, j ∈ {1, . . . , d}, to obtain the

linear measurement model
y = Ax+ ε, (2)

where y = [y1, . . . , yk]
T ∈ Rk is the measurement, A =

(
1
d
K(si, tj)

)
i=1,...,k
j=1,...,d

∈

Rk×d is the system matrix, and x = [g(t1), . . . , g(td)]
T ∈ Rd is the unknown.

Download the file signal.mat from the course website. The file contains the
objects y, A, and t corresponding to the noisy, blurred signal y, the system
matrix A, and the vector t, respectively. The file can be imported in Python
with the command

data = scipy.io.loadmat(’signal.mat’)

and you can access the objects by calling data[’y’], data[’A’], and data[’t’].
Note that k = d = 100.

Suppose that we know a priori that the true signal x corresponds to a piecewise
constant function g : [0, 1] → R. A reasonable choice for the prior would then
be the so-called anisotropic total variation prior

f(x) ∝ exp

(
− λ

d∑
k=1

|xk+1 − xk|
)
, λ > 0, (3)

where we assume periodic boundary conditions, i.e., xd+1 = x1.



Your task is as follows:

Write down the posterior density f(x|y) for the unknown parameter x ∈ Rd

in (2) using the prior (3) with λ = 100. Use the Metropolis-within-Gibbs algo-
rithm with random walk Metropolis step size γ = 0.05 to draw a sample of size
N = 104 from the posterior density, and approximate the CM estimator x̂CM of
the unknown parameter x by computing the sample average. Finally, visualize
the approximate CM estimator you obtained by plotting it as a function of t.

Hint: Your reconstruction should look a bit like the boxcar function 1[0.3,0.7], which
was the function used to generate the measurement data.


