Summary of basic probability theory (weeks 1-3)

November 6, 2023

1 Probability space

Let Ω be a set, $\mathcal{F} \subset \mathcal{P}(\Omega)=\{A \mid A \subset \Omega\}$ a set of subsets of Ω, and let $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ be a function.

- The set \mathcal{F} is called a σ-algebra if it satisfies
(i) $\varnothing \in \mathcal{F}$;
(ii) $A \in \mathcal{F} \Rightarrow A^{\complement} \in \mathcal{F}$;
(iii) $\left\{A_{n}\right\}_{n \geq 1}$ is a countable set with $A_{n} \in \mathcal{F}, n \geq 1 \Rightarrow \bigcup_{n \geq 1} A_{n} \in \mathcal{F}$.

The elements of \mathcal{F} are called events. The σ-algebra structure ensures that if A is an event, then A^{\complement} ("not A ") is also an event by condition (ii) and that the set-theoretic union and intersection operations can be used to "build" new events by condition (iii). For example, if A and B are events, then $A \cup B$ (" A or B ") is an event and that $A \cap B$ (" A and $B ")$ is an event.

- The function \mathbb{P} is called a probability measure if it satisfies
(iv) $0 \leq \mathbb{P}(A) \leq 1$ for all $A \in \mathcal{F}$;
(v) $\mathbb{P}(\Omega)=1$;
(vi) $\left\{A_{n}\right\}_{n \geq 1}$ is a countable set of disjoint events $A_{n} \in \mathcal{F}, n \geq 1$, i.e., $A_{i} \cap A_{j}=\varnothing$ whenever $i \neq j$, then

$$
\mathbb{P}\left(\bigcup_{n \geq 1} A_{n}\right)=\sum_{n \geq 1} \mathbb{P}\left(A_{n}\right) .
$$

We call the triplet $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space. The set Ω is called the sample space. In our treatment of probability, the set \mathcal{F} is implicitly defined depending on the context, and we simply write $(\Omega, \mathbb{P})=(\Omega, \mathcal{F}, \mathbb{P})$.

These definitions ensure that the usual "rules" for computing using probabilities hold:

- $\mathbb{P}(\varnothing)=0$.
- If A and B are two events satisfying $A \subset B$, then $\mathbb{P}(B \backslash A)=\mathbb{P}(B)-\mathbb{P}(A)$.
- If A and B are two events satisfying $A \subset B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- For any event A, there holds $\mathbb{P}\left(A^{\complement}\right)=1-\mathbb{P}(A)$.
- For any two events A and B (not necessarily disjoint), there holds

$$
\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B) .
$$

Note that if A and B are mutually disjoint events, i.e., $A \cap B=\varnothing$, then the above states that $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)$ ("addition rule of disjoint events").

- For any countable sequence of events $\left\{A_{n}\right\}_{n \geq 1}$, not necessarily pairwise disjoint, there holds

$$
\mathbb{P}\left(\bigcup_{n \geq 1} A_{n}\right) \leq \sum_{n \geq 1} \mathbb{P}\left(A_{n}\right)
$$

Definition 1. Let A and B be two events such that $\mathbb{P}(B)>0$. The conditional probability of A, given that B has already happened, is

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Definition 2. Two events A and B are said to be independent if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

This notion can be expressed in terms of conditional probability.
Lemma 1. Assume $\mathbb{P}(B)>0$. Then

- $\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \mathbb{P}(B)$;
- the events A and B are independent if and only if $\mathbb{P}(A \mid B)=\mathbb{P}(A)$.

Theorem 1 (Law of total probability). Let A_{1}, \ldots, A_{k} be events that form a partition of Ω, i.e., $A_{i} \cap A_{j}=\varnothing$ whenever $i \neq j$ and $\Omega=\bigcup_{i=1}^{k} A_{i}$. Then, for any event B, there holds

$$
\mathbb{P}(B)=\sum_{i=1}^{k} \mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)
$$

This means that we can form the unconditional probability $\mathbb{P}(B)$ given knowledge of $\mathbb{P}\left(B \mid A_{i}\right)$ and $\mathbb{P}\left(A_{i}\right)$.

Theorem 2 (Bayes' theorem). Let A and B be events and assume that $\mathbb{P}(B)>0$. Then

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}
$$

The conditional probability for $A \mid B$ (the "cause" A given the "effect" B) can be written in terms of the conditional probability for the $B \mid A$ (the "effect" B given the "cause" A).

2 Random variables

A random variable $(R V) X$ with values in a set E is a function $X: \Omega \rightarrow E$. The set E is called the outcome or target space.

- When $E \subset \mathbb{R}$, we say that X is a real-valued random variable.
- When $E \subset \mathbb{R}^{d}, d \geq 2$, we say that X is a vector-valued random variable.
- When $E \subset \mathbb{R}$ is countable, we say that X is a discrete random variable.

A random variable $X: \Omega \rightarrow E$ induces a probability measure P_{X} on E, defined by

$$
P_{X}(B)=\mathbb{P}\left(X^{-1}(B)\right)=\mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in B\}) \quad \text { for all subsets } B \subset E
$$

which is called the probability distribution (or law) of X.

It is common to simply write

$$
\{X \in B\}=\{\omega \in \Omega \mid X(\omega) \in B\}
$$

and

$$
P_{X}(B)=\mathbb{P}(X \in B)
$$

Two random variables X and Y with the same target space are said to be equal in law if they have the same probability distribution:

$$
\mathbb{P}(X \in B)=\mathbb{P}(Y \in B) \quad \text { for all subsets } B \subset E
$$

Usually, we are ultimately interested in the laws of random variables rather than the random variables per se. (This is also why the probability space (Ω, \mathbb{P}) is typically suppressed when working with random variables.)

2.1 Discrete random variables

If X is a discrete random variable, i.e., the target space E is countable, then the probability mass function $(P M F) p_{X}: E \rightarrow[0,1]$ is simply the probability associated with each value that the random variable can take:

$$
p_{X}(x)=\mathbb{P}(X=x), \quad x \in E
$$

This means that the probability distribution can be written as

$$
\mathbb{P}(X \in B)=\sum_{x \in B} p_{X}(x), \quad B \subset E
$$

which implies that the PMF p_{X} determines the law of X completely.
The cumulative distribution function $(C D F) F_{X}: \mathbb{R} \rightarrow[0,1]$ of a real-valued, discrete random variable is

$$
F_{X}(x)=\sum_{\substack{a \leq x \\ a \in E}} p_{X}(a), \quad x \in \mathbb{R}
$$

The CDF satisfies

- $a \leq b \Rightarrow F_{X}(a) \leq F_{X}(b)$;
- F_{X} is right-continuous: $F_{X}(a)=\lim _{x \rightarrow a+} F_{X}(x)$ for all $a \in \mathbb{R}$;
- $F_{X}(-\infty)=\lim _{x \rightarrow-\infty} F_{X}(x)=0$ and $F_{X}(\infty)=\lim _{x \rightarrow \infty} F_{X}(x)=1$;
- $a<b \Rightarrow \mathbb{P}(a<X \leq b)=F_{X}(b)-F_{X}(a) ;$
- $\mathbb{P}(X>a)=1-F_{X}(a)$ for $a \in \mathbb{R}$;
- $p_{X}(x)=\mathbb{P}(X=x)=F_{X}(x)-\lim _{y \rightarrow x-} F_{X}(y)$ for $x \in \mathbb{R}$,

The generalized inverse of the CDF is called the quantile function $F_{X}^{-1}:(0,1) \rightarrow \mathbb{R}$, defined by

$$
F_{X}^{-1}(q)=\inf \left\{x \in \mathbb{R} \mid F_{X}(x) \geq q\right\}, \quad q \in(0,1)
$$

The quantile function of a discrete random variable satisfies $F_{X}\left(F_{X}^{-1}(q)\right) \geq q$ for all $q \in$ $(0,1)$.

2.1.1 Joint distribution (discrete random variables)

If $X: \Omega \rightarrow E$ and $Y: \Omega \rightarrow F$ are discrete random variables, then the joint PMF $p_{X, Y}:$ $E \times F \rightarrow[0,1]$ is defined as

$$
p_{X, Y}(x, y)=\mathbb{P}(X=x, Y=y), \quad(x, y) \in E \times F
$$

In consequence, the joint probability distribution is

$$
P_{X, Y}(C)=\mathbb{P}((X, Y) \in C)=\sum_{(x, y) \in C} p_{X, Y}(x, y) \quad \text { for all } C \subset E \times F
$$

One can obtain the marginal PMFs of X and Y, respectively, by summation over the "nuisance" RVs:

$$
\begin{aligned}
& p_{X}(x)=\sum_{y \in F} p_{X, Y}(x, y), \quad x \in E \\
& p_{Y}(y)=\sum_{x \in E} p_{X, Y}(x, y), \quad y \in F
\end{aligned}
$$

and likewise for the marginal distributions of X and Y, respectively:

$$
\begin{aligned}
& P_{X}(A)=\mathbb{P}(X \in A, Y \in F)=\sum_{x \in A, y \in F} p_{X, Y}(x, y), \quad A \subset E \\
& P_{Y}(B)=\mathbb{P}(X \in E, Y \in B)=\sum_{x \in E, y \in B} p_{X, Y}(x, y), \quad B \subset F
\end{aligned}
$$

Definition 3. The random variables X and Y are said to independent if, for any subsets $A \subset E$ and $B \subset F$, there holds

$$
\mathbb{P}(X \in A, Y \in B)=\mathbb{P}(X \in A) \mathbb{P}(Y \in B)
$$

Equivalently, the random variables X and Y are independent if and only if

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y) \quad \text { for all }(x, y) \in E \times F
$$

The concepts of joint probability distribution, joint PMF, marginal distributions, and independence of random variables can be generalized in a natural way to arbitrarily many random variables.

Definition 4. Let (X, Y) be a discrete random variable in $E \times F$ with joint PMF $p_{X, Y}$ and marginal PMFs p_{X} and p_{Y}. The conditional PMF $p_{X \mid Y}$ of X, given a realization of Y, is defined as

$$
p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)} \quad \text { for all } x \in E
$$

provided that $y \in F$ satisfies $p_{Y}(y)>0$.

2.1.2 Change of variables (discrete random variables).

Proposition 1. Let $X: \Omega \rightarrow E$ and $Y: \Omega \rightarrow F$ be discrete random variables such that $Y=g(X)$, where $g: E \rightarrow F$. Then the PMF of Y is given by

$$
p_{Y}(y)=\sum_{x \in g^{-1}(\{y\})} p_{X}(x)=\sum_{\substack{x \in E \\ g(x)=y}} p_{X}(x)
$$

In other words, the PMF of Y at point y is obtained by summing up the PMF of X over the preimage $g^{-1}(\{y\})$.

2.2 Continuous random variables.

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a probability density function (PDF) if

- $f(x) \geq 0$ for all $x \in \mathbb{R}$;
- $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$.

A real-valued random variable X is said to be a continuous random variable if there exists a PDF $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$ such that, for all $a \leq b$, there holds

$$
\begin{equation*}
\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x . \tag{1}
\end{equation*}
$$

Then f_{X} is called the probability density function (PDF) of X.
Note that (11) implies for any (measurable) subset $A \subset \mathbb{R}$ that

$$
P_{X}(A)=\mathbb{P}(X \in A)=\int_{A} f_{X}(x) \mathrm{d} x
$$

meaning that the $\operatorname{PDF} f_{X}$ determines the law of X completely.
Note also an important difference to discrete random variables: for continuous random variables, there holds

$$
\mathbb{P}(X=x)=\int_{x}^{x} f_{X}(t) \mathrm{d} t=0 \quad \text { for all } x \in \mathbb{R}
$$

In consequence, $\mathbb{P}(a \leq X \leq b)=\mathbb{P}(a<X \leq b)=\mathbb{P}(a \leq X<b)=\mathbb{P}(a<X<b)$ for all $a<b$.

The cumulative distribution function (CDF) $F_{X}: \mathbb{R} \rightarrow[0,1]$ of a real-valued, continuous random variable is

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) \mathrm{d} t .
$$

In addition, if F_{X} is differentiable at $x \in \mathbb{R}$, then

$$
f_{X}(x)=F_{X}^{\prime}(x) . \quad\left(\text { " } F_{X} \text { is the antiderivative of } f_{X} "\right)
$$

The CDF satisfies

- $a \leq b \Rightarrow F_{X}(a) \leq F_{X}(b) ;$
- F_{X} is continuous;
- $F_{X}(-\infty)=\lim _{x \rightarrow-\infty} F_{X}(x)=0$ and $F_{X}(\infty)=\lim _{x \rightarrow \infty} F_{X}(x)=1$;
- $a \leq b \Rightarrow \mathbb{P}(a \leq X \leq b)=F_{X}(b)-F_{X}(a)$;
- $\mathbb{P}(X \geq a)=1-F_{X}(a)$ for $a \in \mathbb{R}$.

The generalized inverse of the CDF is called the quantile function $F_{X}^{-1}:(0,1) \rightarrow \mathbb{R}$, defined by

$$
F_{X}^{-1}(q)=\inf \left\{x \in \mathbb{R} \mid F_{X}(x) \geq q\right\}, \quad q \in(0,1) .
$$

The quantile function of a continuous random variable satisfies $F_{X}\left(F_{X}^{-1}(q)\right)=q$ for all $q \in(0,1)$.

Remark. if the CDF has a function inverse G in the sense that $F_{X}(G(q))=q$, then the inverse CDF coincides with the function inverse $F_{X}^{-1}(q)=G(q)$.

Definition 5 (Continuous joint probability distribution / density). A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called a probability density function ($P D F$) if the following conditions hold:

- $f\left(x_{1}, \ldots, x_{n}\right) \geq 0$ for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$;
- $\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}=1$.

The real-valued random variables X_{1}, \ldots, X_{n} admit a continuous joint distribution (resp. admit a joint density) if there exists a $\operatorname{PDF} f_{X_{1}, \ldots, X_{n}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that, for all subsets $A \subset \mathbb{R}^{n}$, there holds

$$
\mathbb{P}\left(\left(X_{1}, \ldots, X_{n}\right) \in A\right)=\int_{A} f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}
$$

Then we call $f_{X_{1}, \ldots, X_{n}}$ the probability density function (PDF) of X.
In the following, we focus on the case $n=2$ (the generalization to $n>2$ is natural). The joint probability distribution is

$$
P_{X, Y}(C)=\mathbb{P}((X, Y) \in C)=\int_{C} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y \quad \text { for all } C \subset \mathbb{R} \times \mathbb{R}
$$

One can obtain the marginal PDFs of X and Y, respectively, by integrating out the "nuisance" RVs:

$$
\begin{array}{ll}
f_{X}(x)=\int_{\mathbb{R}} f_{X, Y}(x, y) \mathrm{d} y, & x \in \mathbb{R} \\
f_{Y}(y)=\int_{\mathbb{R}} f_{X, Y}(x, y) \mathrm{d} x, & y \in \mathbb{R}
\end{array}
$$

and likewise for the marginal distributions of X and Y, respectively:

$$
\begin{aligned}
& P_{X}(A)=\mathbb{P}(X \in A, Y \in \mathbb{R})=\int_{A} \int_{\mathbb{R}} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x, \quad A \subset \mathbb{R} \\
& P_{Y}(B)=\mathbb{P}(X \in \mathbb{R}, Y \in B)=\int_{\mathbb{R}} \int_{B} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x, \quad B \subset \mathbb{R}
\end{aligned}
$$

Definition 6. The random variables X and Y are said to independent if, for any subsets $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$, there holds

$$
\mathbb{P}(X \in A, Y \in B)=\mathbb{P}(X \in A) \mathbb{P}(Y \in B)
$$

Equivalently, the random variables X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \quad \text { for all }(x, y) \in \mathbb{R} \times \mathbb{R}
$$

The concepts of joint probability distribution, joint PMF, marginal distributions, and independence of random variables can be generalized in a natural way to arbitrarily many random variables.

Definition 7. Let (X, Y) be a continuous random variable in $\mathbb{R}^{d} \times \mathbb{R}^{k}$ with joint PDF $f_{X, Y}$ and marginal PMFs f_{X} and f_{Y}. The conditional $P D F f_{X \mid Y}$ of X, given a realization of Y, is defined as

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \quad \text { for all } x \in \mathbb{R}^{d}
$$

provided that $y \in \mathbb{R}^{k}$ satisfies $f_{Y}(y)>0$.

2.2.1 Inverse transform sampling

Theorem 3. Let X be a continuous, real-valued random variable with $C D F F_{X}$ and quantile function F_{X}^{-1}.

1. The random variable $U=F_{X}(X) \sim \mathcal{U}(0,1)$.
2. If $U \sim \mathcal{U}(0,1)$, then $F_{X}^{-1}(U)$ has the same distribution as X (they are equal in law).

The previous theorem implies the following algorithm.
Algorithm 1 (Inverse transform sampling).

1. $\operatorname{Draw} U \sim \mathcal{U}(0,1)$.
2. Calculate $X=F_{X}^{-1}(U)$.

If a closed form expression for the inverse CDF is not available, then a computationally attractive formula for approximating the value $F_{X}^{-1}(U)$ is given by the generalized inverse:

$$
F_{X}^{-1}(q)=\inf \left\{x \in \mathbb{R} \mid F_{X}(x) \geq q\right\}
$$

2.2.2 Change of variables (continuous random variables)

Let X_{1}, \ldots, X_{k} be real-valued random variables and let $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$. In order to derive the PDF of $Z=g\left(X_{1}, \ldots, X_{k}\right)$, one can proceed as follows:

1. Compute the CDF F_{Z} of Z by

$$
F_{Z}(z)=\mathbb{P}\left(g\left(X_{1}, \ldots, X_{k}\right) \leq z\right)
$$

2. If F_{Z} is differentiable, then its PDF is given by $f_{Z}=F_{Z}^{\prime}$.

Theorem 4. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuously differentiable and strictly monotonic function. Let X and Y be continuous, real-valued random variables satisfying $Y=g(X)$. Then

$$
\begin{aligned}
& f_{X}(x)=f_{Y}(f(x))\left|g^{\prime}(x)\right|, \quad x \in \mathbb{R} \\
& f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\left(g^{-1}\right)^{\prime}(y)\right|=f_{X}\left(g^{-1}(y)\right)\left|\frac{1}{g^{\prime}\left(g^{-1}(y)\right)}\right|, \quad y \in \mathbb{R}
\end{aligned}
$$

Theorem 5. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1}-diffeomorphism (i.e., g is a bijection and both g and its inverse g^{-1} are continuously differentiable). Let X and Y be continuous random variables with values in \mathbb{R}^{n} satisfying $Y=g(X)$. Then

$$
\begin{aligned}
& f_{X}(x)=f_{Y}(g(x))|\operatorname{det} D g(x)|, \quad x \in \mathbb{R}^{n} \\
& f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\operatorname{det} D g^{-1}(y)\right|, \quad y \in \mathbb{R}^{n}
\end{aligned}
$$

where $D g$ denotes the Jacobian matrix of g and $D g^{-1}$ the Jacobian matrix of g^{-1}, respectively.

