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November 6, 2023

1 Probability space

Let Ω be a set, F ⊂ P(Ω) = {A | A ⊂ Ω} a set of subsets of Ω , and let P : F → [0, 1] be
a function.

• The set F is called a σ-algebra if it satisfies

(i) ∅ ∈ F ;

(ii) A ∈ F ⇒ A∁ ∈ F ;

(iii) {An}n≥1 is a countable set with An ∈ F , n ≥ 1 ⇒
⋃

n≥1An ∈ F .

The elements of F are called events. The σ-algebra structure ensures that if A is an
event, then A∁ (“not A”) is also an event by condition (ii) and that the set-theoretic
union and intersection operations can be used to “build” new events by condition
(iii). For example, if A and B are events, then A ∪ B (“A or B”) is an event and
that A ∩B (”A and B”) is an event.

• The function P is called a probability measure if it satisfies

(iv) 0 ≤ P(A) ≤ 1 for all A ∈ F ;

(v) P(Ω) = 1;

(vi) {An}n≥1 is a countable set of disjoint events An ∈ F , n ≥ 1, i.e., Ai ∩ Aj = ∅
whenever i ̸= j, then

P
( ⋃

n≥1

An

)
=

∑
n≥1

P(An).

We call the triplet (Ω,F ,P) a probability space. The set Ω is called the sample space. In
our treatment of probability, the set F is implicitly defined depending on the context, and
we simply write (Ω,P) = (Ω,F ,P).

These definitions ensure that the usual “rules” for computing using probabilities hold:

• P(∅) = 0.

• If A and B are two events satisfying A ⊂ B, then P(B \A) = P(B)− P(A).

• If A and B are two events satisfying A ⊂ B, then P(A) ≤ P(B).

• For any event A, there holds P(A∁) = 1− P(A).

• For any two events A and B (not necessarily disjoint), there holds

P(A ∪B) = P(A) + P(B)− P(A ∩B).

Note that if A and B are mutually disjoint events, i.e., A ∩ B = ∅, then the above
states that P(A ∪B) = P(A) + P(B) (“addition rule of disjoint events”).
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• For any countable sequence of events {An}n≥1, not necessarily pairwise disjoint,
there holds

P
( ⋃

n≥1

An

)
≤

∑
n≥1

P(An).

Definition 1. Let A and B be two events such that P(B) > 0. The conditional probability
of A, given that B has already happened, is

P(A|B) =
P(A ∩B)

P(B)
.

Definition 2. Two events A and B are said to be independent if

P(A ∩B) = P(A)P(B).

This notion can be expressed in terms of conditional probability.

Lemma 1. Assume P(B) > 0. Then

• P(A ∩B) = P(A|B)P(B);

• the events A and B are independent if and only if P(A|B) = P(A).

Theorem 1 (Law of total probability). Let A1, . . . , Ak be events that form a partition of
Ω, i.e., Ai ∩Aj = ∅ whenever i ̸= j and Ω =

⋃k
i=1Ai. Then, for any event B, there holds

P(B) =

k∑
i=1

P(B|Ai)P(Ai).

This means that we can form the unconditional probability P(B) given knowledge of
P(B|Ai) and P(Ai).

Theorem 2 (Bayes’ theorem). Let A and B be events and assume that P(B) > 0. Then

P(A|B) =
P(B|A)P(A)

P(B)
.

The conditional probability for A|B (the “cause” A given the “effect” B) can be written
in terms of the conditional probability for the B|A (the “effect” B given the “cause” A).

2 Random variables

A random variable (RV) X with values in a set E is a function X : Ω → E. The set E is
called the outcome or target space.

• When E ⊂ R, we say that X is a real-valued random variable.

• When E ⊂ Rd, d ≥ 2, we say that X is a vector-valued random variable.

• When E ⊂ R is countable, we say that X is a discrete random variable.

A random variable X : Ω → E induces a probability measure PX on E, defined by

PX(B) = P(X−1(B)) = P({ω ∈ Ω | X(ω) ∈ B}) for all subsets B ⊂ E,

which is called the probability distribution (or law) of X.
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It is common to simply write

{X ∈ B} = {ω ∈ Ω | X(ω) ∈ B}

and
PX(B) = P(X ∈ B).

Two random variables X and Y with the same target space are said to be equal in law if
they have the same probability distribution:

P(X ∈ B) = P(Y ∈ B) for all subsets B ⊂ E.

Usually, we are ultimately interested in the laws of random variables rather than the ran-
dom variables per se. (This is also why the probability space (Ω,P) is typically suppressed
when working with random variables.)

2.1 Discrete random variables

If X is a discrete random variable, i.e., the target space E is countable, then the probability
mass function (PMF) pX : E → [0, 1] is simply the probability associated with each value
that the random variable can take:

pX(x) = P(X = x), x ∈ E.

This means that the probability distribution can be written as

P(X ∈ B) =
∑
x∈B

pX(x), B ⊂ E,

which implies that the PMF pX determines the law of X completely.
The cumulative distribution function (CDF) FX : R → [0, 1] of a real-valued, discrete

random variable is
FX(x) =

∑
a≤x
a∈E

pX(a), x ∈ R.

The CDF satisfies

• a ≤ b ⇒ FX(a) ≤ FX(b);

• FX is right-continuous: FX(a) = limx→a+ FX(x) for all a ∈ R;

• FX(−∞) = limx→−∞ FX(x) = 0 and FX(∞) = limx→∞ FX(x) = 1;

• a < b ⇒ P(a < X ≤ b) = FX(b)− FX(a);

• P(X > a) = 1− FX(a) for a ∈ R;

• pX(x) = P(X = x) = FX(x)− limy→x− FX(y) for x ∈ R,

The generalized inverse of the CDF is called the quantile function F−1
X : (0, 1) → R, defined

by
F−1
X (q) = inf{x ∈ R | FX(x) ≥ q}, q ∈ (0, 1).

The quantile function of a discrete random variable satisfies FX(F−1
X (q)) ≥ q for all q ∈

(0, 1).
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2.1.1 Joint distribution (discrete random variables)

If X : Ω → E and Y : Ω → F are discrete random variables, then the joint PMF pX,Y :
E × F → [0, 1] is defined as

pX,Y (x, y) = P(X = x, Y = y), (x, y) ∈ E × F.

In consequence, the joint probability distribution is

PX,Y (C) = P((X,Y ) ∈ C) =
∑

(x,y)∈C

pX,Y (x, y) for all C ⊂ E × F.

One can obtain the marginal PMFs of X and Y , respectively, by summation over the
“nuisance” RVs:

pX(x) =
∑
y∈F

pX,Y (x, y), x ∈ E,

pY (y) =
∑
x∈E

pX,Y (x, y), y ∈ F,

and likewise for the marginal distributions of X and Y , respectively:

PX(A) = P(X ∈ A, Y ∈ F ) =
∑

x∈A, y∈F
pX,Y (x, y), A ⊂ E,

PY (B) = P(X ∈ E, Y ∈ B) =
∑

x∈E, y∈B
pX,Y (x, y), B ⊂ F.

Definition 3. The random variables X and Y are said to independent if, for any subsets
A ⊂ E and B ⊂ F , there holds

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

Equivalently, the random variables X and Y are independent if and only if

pX,Y (x, y) = pX(x)pY (y) for all (x, y) ∈ E × F.

The concepts of joint probability distribution, joint PMF, marginal distributions, and
independence of random variables can be generalized in a natural way to arbitrarily many
random variables.

Definition 4. Let (X,Y ) be a discrete random variable in E × F with joint PMF pX,Y

and marginal PMFs pX and pY . The conditional PMF pX|Y of X, given a realization of
Y , is defined as

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
for all x ∈ E,

provided that y ∈ F satisfies pY (y) > 0.

2.1.2 Change of variables (discrete random variables).

Proposition 1. Let X : Ω → E and Y : Ω → F be discrete random variables such that
Y = g(X), where g : E → F . Then the PMF of Y is given by

pY (y) =
∑

x∈g−1({y})

pX(x) =
∑
x∈E

g(x)=y

pX(x).

In other words, the PMF of Y at point y is obtained by summing up the PMF of X over
the preimage g−1({y}).
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2.2 Continuous random variables.

A function f : R → R is called a probability density function (PDF) if

• f(x) ≥ 0 for all x ∈ R;

•
∫∞
−∞ f(x) dx = 1.

A real-valued random variable X is said to be a continuous random variable if there exists
a PDF fX : R → R such that, for all a ≤ b, there holds

P(a ≤ X ≤ b) =

∫ b

a
fX(x) dx. (1)

Then fX is called the probability density function (PDF) of X.
Note that (1) implies for any (measurable) subset A ⊂ R that

PX(A) = P(X ∈ A) =

∫
A
fX(x) dx,

meaning that the PDF fX determines the law of X completely.
Note also an important difference to discrete random variables: for continuous random

variables, there holds

P(X = x) =

∫ x

x
fX(t) dt = 0 for all x ∈ R.

In consequence, P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b) for all
a < b.

The cumulative distribution function (CDF) FX : R → [0, 1] of a real-valued, continuous
random variable is

FX(x) =

∫ x

−∞
fX(t) dt.

In addition, if FX is differentiable at x ∈ R, then

fX(x) = F ′
X(x). (“FX is the antiderivative of fX”)

The CDF satisfies

• a ≤ b ⇒ FX(a) ≤ FX(b);

• FX is continuous;

• FX(−∞) = limx→−∞ FX(x) = 0 and FX(∞) = limx→∞ FX(x) = 1;

• a ≤ b ⇒ P(a ≤ X ≤ b) = FX(b)− FX(a);

• P(X ≥ a) = 1− FX(a) for a ∈ R.

The generalized inverse of the CDF is called the quantile function F−1
X : (0, 1) → R, defined

by
F−1
X (q) = inf{x ∈ R | FX(x) ≥ q}, q ∈ (0, 1).

The quantile function of a continuous random variable satisfies FX(F−1
X (q)) = q for all

q ∈ (0, 1).
Remark. if the CDF has a function inverse G in the sense that FX(G(q)) = q, then

the inverse CDF coincides with the function inverse F−1
X (q) = G(q).
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Definition 5 (Continuous joint probability distribution / density). A function f : Rn → R
is called a probability density function (PDF) if the following conditions hold:

• f(x1, . . . , xn) ≥ 0 for all (x1, . . . , xn) ∈ Rn;

•
∫
R · · ·

∫
R f(x1, . . . , xn) dx1 · · · dxn = 1.

The real-valued random variablesX1, . . . , Xn admit a continuous joint distribution (resp. ad-
mit a joint density) if there exists a PDF fX1,...,Xn : Rn → R such that, for all subsets
A ⊂ Rn, there holds

P((X1, . . . , Xn) ∈ A) =

∫
A
fX1,...,Xn(x1, . . . , xn) dx1 · · · dxn.

Then we call fX1,...,Xn the probability density function (PDF) of X.

In the following, we focus on the case n = 2 (the generalization to n > 2 is natural).
The joint probability distribution is

PX,Y (C) = P((X,Y ) ∈ C) =

∫
C
fX,Y (x, y) dx dy for all C ⊂ R× R.

One can obtain the marginal PDFs of X and Y , respectively, by integrating out the
“nuisance” RVs:

fX(x) =

∫
R
fX,Y (x, y) dy, x ∈ R,

fY (y) =

∫
R
fX,Y (x, y) dx, y ∈ R,

and likewise for the marginal distributions of X and Y , respectively:

PX(A) = P(X ∈ A, Y ∈ R) =
∫
A

∫
R
fX,Y (x, y) dy dx, A ⊂ R,

PY (B) = P(X ∈ R, Y ∈ B) =

∫
R

∫
B
fX,Y (x, y) dy dx, B ⊂ R.

Definition 6. The random variables X and Y are said to independent if, for any subsets
A ⊂ R and B ⊂ R, there holds

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

Equivalently, the random variables X and Y are independent if and only if

fX,Y (x, y) = fX(x)fY (y) for all (x, y) ∈ R× R.

The concepts of joint probability distribution, joint PMF, marginal distributions, and
independence of random variables can be generalized in a natural way to arbitrarily many
random variables.

Definition 7. Let (X,Y ) be a continuous random variable in Rd × Rk with joint PDF
fX,Y and marginal PMFs fX and fY . The conditional PDF fX|Y of X, given a realization
of Y , is defined as

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
for all x ∈ Rd,

provided that y ∈ Rk satisfies fY (y) > 0.
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2.2.1 Inverse transform sampling

Theorem 3. Let X be a continuous, real-valued random variable with CDF FX and
quantile function F−1

X .

1. The random variable U = FX(X) ∼ U(0, 1).

2. If U ∼ U(0, 1), then F−1
X (U) has the same distribution as X (they are equal in law).

The previous theorem implies the following algorithm.

Algorithm 1 (Inverse transform sampling).

1. Draw U ∼ U(0, 1).

2. Calculate X = F−1
X (U).

If a closed form expression for the inverse CDF is not available, then a computationally
attractive formula for approximating the value F−1

X (U) is given by the generalized inverse:

F−1
X (q) = inf{x ∈ R | FX(x) ≥ q}.

2.2.2 Change of variables (continuous random variables)

Let X1, . . . , Xk be real-valued random variables and let g : Rk → R. In order to derive the
PDF of Z = g(X1, . . . , Xk), one can proceed as follows:

1. Compute the CDF FZ of Z by

FZ(z) = P(g(X1, . . . , Xk) ≤ z).

2. If FZ is differentiable, then its PDF is given by fZ = F ′
Z .

Theorem 4. Let g : R → R be a continuously differentiable and strictly monotonic func-
tion. Let X and Y be continuous, real-valued random variables satisfying Y = g(X).
Then

fX(x) = fY (f(x))|g′(x)|, x ∈ R;

fY (y) = fX(g−1(y))|(g−1)′(y)| = fX(g−1(y))

∣∣∣∣ 1

g′(g−1(y))

∣∣∣∣, y ∈ R.

Theorem 5. Let g : Rn → Rn be a C1-diffeomorphism (i.e., g is a bijection and both
g and its inverse g−1 are continuously differentiable). Let X and Y be continuous random
variables with values in Rn satisfying Y = g(X). Then

fX(x) = fY (g(x))| detDg(x)|, x ∈ Rn,

fY (y) = fX(g−1(y))|detDg−1(y)|, y ∈ Rn,

where Dg denotes the Jacobian matrix of g and Dg−1 the Jacobian matrix of g−1, respec-
tively.
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