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Tests and confidence intervals for linear regression
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Consider n observations (pairs) (x1, y1), . . . , (xn, yn) of (x , y). Assume that
the values yi are observed values of a random variable y and assume that
the values xi are observed non-random values of x . Assume that the
values yi depend linearly on the value xi . A simple (one explanatory
variable) linear model can be presented in the following way:

yi = b0 + b1xi + εi , i ∈ {1, . . . , n},

where the regression coefficients b0 and b1 are unknown constants and the
expected value of the residuals εi is E[εi ] = 0.
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Linear model, assumptions for parametric tests and
confidence intervals

We now consider testing the parameters of a linear regression model and
calculating confidence intervals for the estimated parameters under
classical assumptions.

Measurement of the values xi is error-free.

The residuals are independent of the values xi .

The residuals are independently and identically distributed (i.i.d.).

The expected value of the residuals is E[εi ] = 0.

The residuals have the same variance E[ε2i ] = σ2.

The residuals are uncorrelated, i.e., ρ(εi , εj) = 0, i ̸= j .

The residuals are normally distributed.
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Slope of the regression line
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Testing the slope of the regression line

The null hypothesis:
H0 : b1 = b01

(typically null hypothesis b1 = 0 is tested).

Possible alternative hypotheses:

H1 : b1 > b01 (one tailed),

H1 : b1 < b01 (one tailed),

H1 : b1 ̸= b01 (two tailed).
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Testing the slope of the regression line

t-test statistic

t =
b̂1 − b01

s/(sx
√
n − 1)

,

where s2 = Var(ε̂) = 1
n−2

∑n
i=1(ε̂i )

2 (see previous lecture) and s2x is
the sample variance of the variable x .

Under the null hypothesis H0, the test statistic follows Student’s
t-distribution with n − 2 degrees of freedom.

Under the null hypothesis H0, the expected value of the test statistic
is E[t] = 0.

Large absolute values of the test statistic suggest that the null
hypothesis H0 does not hold.

The null hypothesis H0 is rejected if the p-value is small enough.
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Slope of the regression line, confidence interval

Under the normality assumption on the residuals, the (1− α) · 100%
confidence interval for the slope of the regression line can be given as(

b̂1 − tn−2,α/2
s

sx
√
n − 1

, b̂1 + tn−2,α/2
s

sx
√
n − 1

)
,

where s2 = Var(ε̂), s2x is the sample variance of the variable x , tn−2 is
Student’s t distribution with n − 2 degrees of freedom, and tn−2,α/2 is the
(1− α/2) · 100 percentile of the t(n − 2) distribution.
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Intercept/constant term
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Testing the constant term of the regression line

The null hypothesis:
H0 : b0 = b00.

Possible alternative hypotheses:

H1 : b0 > b00 (one tailed),

H1 : b0 < b00 (one tailed),

H1 : b0 ̸= b00 (two tailed).
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Testing the constant term of the regression line

t-test statistic

t =
b̂0 − b00
s
√∑n

i=1 x
2
i

sx
√

n(n−1)

,

where s2 = Var(ε̂) = 1
n−2

∑n
i=1(ε̂i )

2 and s2x is the sample variance of
the variable x .

Under the null hypothesis H0, the test statistic follows Student’s
t-distribution with n − 2 degrees of freedom.

Under the null hypothesis H0, the expected value of the test statistic
is E[t] = 0.

Large absolute values of the test statistic suggest that the null
hypothesis H0 does not hold.

The null hypothesis H0 is rejected if the p-value is small enough.
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Intercept, confidence interval

Under normality assumption, (1− α) · 100% confidence interval for the
constant term of the regression line can be given as

(
b̂0 − tn−2,α/2

s
√∑n

i=1 x
2
i

sx
√

n(n − 1)
, b̂0 + tn−2,α/2

s
√∑n

i=1 x
2
i

sx
√
n(n − 1)

)
,

where s2 = Var(ε̂), s2x is the sample variance of the variable x , tn−2 is
Student’s t-distribution with n − 2 degrees of freedom, and tn−2,α/2 is the
(1− α/2) · 100 percentile of the t(n − 2) distribution.
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Predicting

389



Predicting the values of variable y

A prediction ỹ for the value of the variable y , when x has value x̃ , can be
given as

ỹ |x̃ = b̂0 + b̂1x̃ .

The more there are observations, the smaller the variance σ2 is, and the
closer x̃ is to the sample mean of x

’
then the better (more accurate) the

prediction is. Note that x̃ should be on the range of the observed values of
the variable x .
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Predicting the values of variable y

Under normality assumption, a (1− α) · 100% confidence interval for the
value of y , when x has value x̃ , can be given as

b̂0 + b̂1x̃ ± tn−2,α/2s

√
1 +

1

n
+

(x̃ − x)2

(n − 1)s2x
,

where s2 = Var(ε̂), s2x is the sample variance of the variable x , tn−2 is
Student’s t-distribution with n − 2 degrees of freedom, and tn−2,α/2 is the
(1− α/2) · 100 percentile of the t(n − 2) distribution.
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Predicting the expected value of variable y

A prediction µ̂y for the expected value E[y ], when x has value x̃
’
can be

given as
µ̂y |x̃ = b̂0 + b̂1x̃ .

Remarks:

Note that ỹ |x̃ estimates the value of a random variable while µ̂y |x̃
estimates the expected value (constant). The estimate ỹ |x̃ estimates
the values of the variable on an individual level when x has value x̃ ,
while the estimate µ̂y |x̃ estimates the mean value of the variable y
when x has value x̃ .

Even though the estimates are the same, the corresponding
confidence intervals are not! The confidence interval for the value of
y is wider. It is easier to predict average behavior than to predict
individual values.
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Predicting the expected value of variable y

Under normality assumption, a (1− α) · 100% confidence interval for E[y ],
when x has value x̃ , can be given as

b̂0 + b̂1x̃ ± tn−2,α/2s

√
1

n
+

(x̃ − x)2

(n − 1)s2x
,

where s2 = Var(ε̂), s2x is the sample variance of the variable x , tn−2 is
Student’s t-distribution with n − 2 degrees of freedom, and tn−2,α/2 is the
(1− α/2) · 100 percentile of the t(n − 2) distribution.
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Numerical example

Last lecture, we obtained the regression model

ŷ = b̂0 + b̂1x , b̂0 = 10723.87 and b̂1 = −0.9386

for the cookie sales of Brand Y (dependent variable) with respect to the
cookie sales of Brand X (explanatory variable). We wish to derive the 95%
confidence interval for the sales when 5500 units of BrandX cookies are sold.

On the condition that ĉ = 5500 units of Brand X cookies are sold, the
prediction of the sales of Brand Y cookies is

j̃ |c̃ = b̂0 + b̂1c̃ = 10723.87− 0.9386 · 5500 = 5561.57.

The corresponding confidence interval can be given as

b̂0 + b̂1c̃ ± tn−2,α/2s

√
1 + 1

n + (c̃−c)2

(n−1)s2c
= 5561.57± 257.974,

where we plugged in the values tn−2,α/2 = t10,0.025 = 2.228, c = 5567.833,
sc = 302.95, and s2 = 11948.42.

∴ If 5500 units of Brand X cookies are sold, then the prediction for the
sales of Brand Y cookies is 5562 units. A 95% confidence interval for the
prediction is (5308,5816).
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Bootstrap confidence intervals
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Bootstrap confidence intervals for the regression
coefficients

Consider the estimated residuals ε̂1, . . . , ε̂n and the fitted values ŷ1, . . . , ŷn
of the regression model. Collect a new sample ε̌1, . . . , ε̌n by picking n data
points randomly with replacement from ε̂1, . . . , ε̂n. Form a bootstrap
sample

(x1, y̌1), . . . , (xn, y̌n),

where
y̌i = ŷi + ε̌i .

Calculate estimates for the regression coefficients b0 and b1 from the
bootstrap sample. Repeat this several times, for example 999 times. Order
now all the estimates (the original ones and the 999 bootstrap estimates)
from the smallest to the largest. Now an estimate for the 90% confidence
interval (l , u) is obtained by choosing the 50th ordered estimate as l and
the 951st estimate as u. An estimate for the 95% confidence interval (l , u)
is obtained by choosing the 25th estimate as l and the 976th estimate as u.
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Prediction, bootstrap confidence intervals

A prediction µ̂y for the expected value E[y ], when x has value x̃ , was
given as

µ̂y |x̃ = b̂0 + b̂1x̃ .

Consider bootstrap estimates for the regression coefficients b0 and b1.
One can calculate bootstrap confidence intervals for µ̂y |x̃ by replacing b̂0
and b̂1 by bootstrap estimates in the formula above. That is then
repeated, for example, 999 times. After that, all the 1000 predictions are
ordered and bootstrap confidence intervals are obtained.
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Coefficient of determination, bootstrap confidence intervals

Bootstrap samples
(x1, y̌1), . . . , (xn, y̌n)

can be used also for calculating bootstrap confidence intervals for the
coefficient of determination of the model. Coefficient of determination is
estimated (separately) from every bootstrap sample. One can use, for
example, 999 bootstrap samples. After that, all the 1000 estimates are
ordered and bootstrap confidence intervals are obtained.
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Bootstrap confidence intervals, alternative approach

Instead of bootstrapping from the estimated residuals, one may take
bootstrap samples directly from the original observations
(x1, y1), . . . , (xn, yn). Parameter estimates are then calculated from the
bootstrap samples, the estimates are ordered and bootstrap confidence
intervals are obtained.
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Multivariate linear regression
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Multiple linear model

Consider n observations (pairs) (x1, y1), . . . , (xn, yn) of (x , y). Assume that
the values yi are observed values of a random variable y and assume that
the values xi are observed non-random values of a p-dimensional x . (Here,
xi is a p-vector.) Assume that p < n and that the values of the variable y
depend linearly on the values of the variable x .

A multiple linear model can be presented in the following way

yi = b0 + b1(xi )1 + b2(xi )2 + · · ·+ bp(xi )p + εi , i ∈ {1, . . . , n}, (1)

where the regression coefficients b0, . . . , bp are unknown constants and the
expected value of the residuals εi is E[εi ] = 0.

The model (1) can also be expressed in vectorized form as

yi = b0 + bTxi + εi , i ∈ {1, . . . , n},

where b = [b1, . . . , bp]
T and xi = [(xi )1, . . . , (xi )p]

T.
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Linear model, general assumptions

The following assumptions are usually made when multiple linear models
are considered.

The measurement of the values xi is error-free.

The values (xi )s , (xi )k , s ̸= k , are mutually independent.

The residuals are independent of the values xi .

The residuals are independently and identically distributed (i.i.d.).

The expected value of the residuals is E[εi ] = 0.

The residuals have the same variance E[ε2i ] = σ2, i = 1, . . . , n.

The residuals are uncorrelated, i.e., ρ(εi , εj) = 0, i ̸= j .

—

Under the assumptions above, the variable y has the following properties:

The expected value E[yi ] = b0 + bTxi , i = 1, . . . , n.

The variance Var(yi ) = Var(εi ) = σ2, i = 1, . . . , n.

The correlation coefficient ρ(yi , yj) = 0, i ̸= j .
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Multiple linear regression
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Multiple linear regression

The multiple linear model

yi = b0 + bTxi + εi , i = 1, . . . , n,

has the following parameters: regression coefficients b0 and
b = (b1, . . . , bp)

T and the variance of the residuals E[ε2i ] = σ2. These
parameters are usually unknown and must be estimated from the
observations.

—

Under the assumption E[εi ] = 0 for all i = 1, . . . , n, the linear model can
be given as

yi = E[yi ] + εi , i = 1, . . . , n,

where E[yi ] = b0 + bTxi is the systematic part and εi is the random part
of the model.

404



Regression plane

The systematic part of the linear model

E[yi ] = b0 + bTxi

defines the regression plane

y = b0 + bTx .

The variance of the residuals E[ε2i ] = σ2 describes the deviation of the
observed points from the regression plane.

—

The aim in multiple linear regression analysis is to find estimates for the
regression coefficients b0 and b = (b1, . . . , bp)

T. The estimates should be
such that the estimated regression plane would explain the variation of the
values of the dependent variable with great accuracy.
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Least squares method

Let β = (b0, b1, . . . , bp)
T. Let X be an n× (p + 1) data matrix, where the

elements of the first column are all equal to 1 and where the columns
2, . . . , p + 1 are the observations xi . Let Y = (y1, . . . , yn)

T be an n × 1
data vector.

The least squares estimates for b0 and b = (b1, . . . , bp)
T are given by

β̂ = (b̂0, b̂1, . . . , b̂p)
T = (XTX )−1XTY .

These estimates minimize the sum of the squared differences

n∑
i=1

ε2i =
n∑

i=1

(yi − b0 − bTxi )
2.

Remark. We assumed above that the matrix XTX is non-singular. If XTX
is singular, then some of the explanatory variables must be fully linearly
dependent. In that case, some of the variables can be excluded from the
analysis without losing any information.
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Fits and residuals

The least squares estimates now give an estimated regression plane

ŷ = b̂0 + b̂Tx .

The fitted values of the variable yi , i.e., the values given to the variable y
by the regression plane at point xi , are

ŷi = b̂0 + b̂Txi , i = 1, . . . , n.

The residuals ε̂i of the estimated model are the differences

ε̂i = yi − ŷi , i = 1, . . . , n

of the observed values yi (of the variable y) and the fitted values ŷi .

The regression model explains the observed values of the dependent
variable the better, the closer the fitted values are to the observed ones. In
other words, the regression model explains the observed values of the
dependent variable the better, the smaller the residuals of the estimated
model are.
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Residual mean square estimation

If the assumptions of the linear model hold, then an unbiased estimate of
the Var(εi ) = σ2 is

Var(ε̂) =
1

n − p − 1

n∑
i=1

ε̂2i .

(In the formula above, the number of the estimated parameters
(b0, b1, . . . , bp) is subtracted from the sample size n.)
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Sums of squares

The total sum of squares (SST)

n∑
i=1

(yi − y)2

measures total variation of the observed values yi . The error sum of
squares (SSE)

n∑
i=1

(ε̂i )
2

measures the variation of the residuals ε̂i . The model sum of squares
(SSM)

n∑
i=1

(ŷi − y)2

measures the part of the variation of the dependent variable y that is
explained by the regression model.
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Coefficient of determination

The coefficient of determination

R2 = 1− SSE

SST
=

SSM

SST

measures the proportion of SST explained by the model.

There holds 0 ≤ R2 ≤ 1 and the coefficient of determination is usually
given as a percentage 100R2%.
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Numerical example

The effect of nonpareils and chocolate chops on the mass of cookies is
examined in a lab.

Nonpareil Chocolate chip Mass

15 5 24
13 7 28
12 9 26
11 7 27
10 10 29
9 12 31
17 2 19
16 4 21
12 8 25
3 15 36

Table: The number of nonpareils and chocolate chips, as well as the measured
masses of a sample of cookies.
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The least squares estimates for the regression coefficients (b0, b1, b2)
T can

be calculated using

X =



1 15 5
1 13 7
1 12 9
1 11 7
1 10 10
1 9 12
1 17 2
1 16 4
1 12 8
1 3 15


and Y =



24
28
26
27
29
31
19
21
25
36


.

The estimates are

(b̂0, b̂1, b̂2)
T = (XTX )−1XTY = (29.9718,−0.6562, 0.5533)T.

Now one obtains the fits ŷi = b̂0 + b̂Txi for the mass and can calculate the
residuals ε̂i = yi − ŷi .

412



Nonpareil Chocolate chip Mass Fit Residual

15 5 24 22.8953 1.1047
13 7 28 25.3143 2.6857
12 9 26 27.0771 -1.0771
11 7 27 26.6267 0.3733
10 10 29 28.9428 0.0572
9 12 31 30.7056 0.2944
17 2 19 19.9230 -0.9230
16 4 21 21.6858 -0.6858
12 8 25 26.5238 -1.5238
3 15 36 36.3027 -0.3027

Table: The effect of nonpareils and chocolate chips on the mass. Also the fitted
values and residuals are tabulated.
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The sample mean of the mass y = 26.6 and the total sum of squares

SST =
n∑

i=1

(yi − y) =
10∑
i=1

(yi − 26.6)2 = 214.4.

The error sum of squares

SSE =
10∑
i=1

(ε̂i )
2 = 13.5586

and the model sum of squares

SSM =
n∑

i=1

(ŷi − y)2 =
10∑
i=1

(ŷi − 26.6)2 = 200.8307.

Thus, the coefficient of determination is

R2 =
SSM

SST
=

200.8307

214.4
= 0.9367 = 93.67%.
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Multivariate linear regression
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Multivariate linear model

Consider n observations (pairs) (x1, y1), . . . , (xn, yn) of (x , y). Assume that
the values yi are the observed values of a q-variate random vector y and
assume that the values xi are observed non-random values of a p-variate
x . Assume that p < n and that the values of the variable y depend linearly
on the variable x .

A multivariate linear model can be given as

yi = b0 + BTxi + εi , i = 1, . . . , n,

where the elements of a q × 1 vector b0 and p × q regression matrix B are
unknown constants and the expected value of the residuals εi is E[εi ] = 0.
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Linear model, general assumptions

The following assumptions are usually made when multivariate linear
models are considered.

The measurement of the values xi is error-free.

The values (xi )s , (xi )k , s ̸= k , are mutually independent.

The residuals are independent of the values xi .

The residuals are independently and identically distributed (i.i.d.).

The expected value of the residuals E[εi ] = 0, i = 1, . . . , n.

The residuals have the same covariance matrix E[εiεTi ] = Σ,
i = 1, . . . , n.

The residuals are uncorrelated, i.e., ρ((εi )k , (εj)k) = 0 for all k and
for all i ̸= j .
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Generalized least squares

Let β = (b0, b1, . . . , bp)
T. Let X be an n× (p + 1) data matrix, where the

elements of the first column are all equal to 1 and where the columns
2, . . . , p+1 are the observations xi . Let Y be an n× q data matrix, where
the columns are the observations yi .

Now the regression parameters b0 and B can be estimated using

β̂ = [b̂0, B̂
T]T = (XTX )−1XTY .
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Fits and residuals

The fitted values of the variable yi , i.e., the values given to the variable y
by the regression model at points xi , are

ŷi = b̂0 + B̂Txi , i = 1, . . . , n.

The fits can also be expressed as a matrix

Ŷ = X β̂.

The residuals ε̂i of the estimated model are the differences

ε̂i = yi − ŷi , i = 1, . . . , n,

of the observed values yi (of the variable y) and the fitted values ŷi .
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Trace correlation and determinant correlation

Assume that the matrix Y is centered so that the columns of Y have zero
mean. (That is, the sample mean is subtracted from the original
observations.) Let X be as above, and let β̂ be calculated for the centered
data. Let

Ŷ = X β̂,

Ê = Y − X β̂

and let
D = (Y TY )−1ÊTÊ .

It is straightforward to see that the matrix ÊTÊ ranges between zero,
when all the variation of Y is explained by the regression model, and
Y TY , when no part of the variation in Y is explained by X . Therefore
I − D varies between the identity matrix and the zero matrix. It can be
shown that all the eigenvalues of I − D lie between 1 and 0.
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Trace correlation and determinant correlation

It would be desirable that a multivariate coefficient of determination would
range between zero and one. This is obtained by either using trace
correlation rT or determinant correlation rD :

r2T =
1

p
tr(I − D),

r2D = det(I − D).

Note that the coefficient rD is zero if and only if at least one of the
eigenvalues of I − D is zero, while rT is zero if and only if all the
eigenvalues of I − D are zero.

It is possible to construct parametric tests and confidence intervals for the
parameters in multiple and multivariate regression analysis. Alternatively,
one can consider bootstrapping.
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Selecting variables
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Selecting variables

In multiple and multivariate regression analysis, the explanatory variables
are usually assumed to be independent. Perfect independence is rarely
achieved if more than one explanatory variables are used. Still, the
explanatory variables may not be highly correlated. Multicollinearity makes
the model unstable and complicates assessing the effects of different
explanatory variables separately.
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Variance inflation factor

The variance inflation factor (VIF) can be used to measure the
multicollinearity of the explanatory variables. The VIF for the explanatory
variable (xi )k is defined as

VIFk =
1

1− R2
k

,

where R2
k is the coefficient of determination for a model where (xi )k is the

dependent variable and the rest of (xi )s are explanatory variables. VIF is
calculated separately for each explanatory variable (xi )k . If the variable
(xi )k is independent from the other explanatory variables, then VIF = 1.
On the other hand, VIF ≥ 10 suggests that multicollinearity is present.

In multiple and multivariate regression models the aim is to select variables
such that the coefficient of determination is as high as possible and the
explanatory variables are as independent as possible. VIF (or some other
measure of dependence) can be used in selecting the variables. Variables
can be added and removed one by one and the changes in VIF and
coefficient of determination can be tracked.
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Cookie example continues

In this example VIF is used to assess multicollinearity of nonpareils and
chocolate chips.

Nonpareil Chocolate chip

15 5
13 7
12 9
11 7
10 10
9 12
17 2
16 4
12 8
3 15

Table: Cookie data, number of nonpareils and chocolate chips.
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The sample standard deviation for nonpareil sx = 4.022161 and chocolate
chips sy = 3.842742, the sample means x = 11.8 and y = 7.9, and the
sample correlation coefficient ρ̂(x , y) = −0.9647379 are needed. Fit

ŷi = y + ρ̂(x , y)
sy
sx
(xi − x) = 7.8 + (−0.9647379)

3.842742

4.022161
(xi − 11.8).

Total sum of squares SST = 113, error sum of squares SSE = 9.307418,
and model sum of squares SSM = 123.6926. Coefficient of determination

R2 =
SSM

SST
=

123.6926

133
= 0.9300195

and

VIF =
1

1− R2
=

1

1− 0.930 . . .
= 14.28969.
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Words of warning

Regression models should not be used to predict any values outside of
the range of x . Tail behavior can differ from majority of the data.

If there is nonlinear dependence between x and y , then linear
regression is not a suitable approach.

The least squares method (l2 regression) is very sensitive to outlines
(i.e., it is non-robust).

427



Parameter identification for non-linear models
and the maximum likelihood estimator
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Linear regression is a prototypical example of a parameter identification
problem. In addition to linear models, one may also be interested in
parameter identification for other types of models.

Example

Given i.i.d. normally distributed data y1, . . . , yn ∼ N (µ, σ2), estimate µ
and σ2.

Example

Given data (x1, y1), . . . , (xn, yn) ∈ R2, find parameters a, b, c ∈ R such
that

yi = ax2i + bxi + c + εi , i ∈ {1, . . . , n},

where the residuals εi satisfy E[εi ] = 0.

Example

Given data y ∈ Rk , find the unknown parameter x ∈ Rd such that
y = Ax + ε, where the residual ε satisfies E[ε] = 0.
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Let y1, . . . , yn be the data, which are i.i.d. random variables. We assume
that these follow a parameter-dependent probability distribution with PDF
(resp. PMF) f (x , y) for some realization of the parameter x ∈ X . (With a

slight abuse of notation, one might write y1, . . . , yn
i.i.d.∼ f (x , ·) for some

unknown x ∈ X .)

Thus we are interested in identifying the value of the parameter x ∈ X ,
which (in some sense) best approximates the data out of the set

F = {f (x , y) | x ∈ X}

containing all the possible candidates for the PDFs f (x , y) which could
have generated the data.

A common method to estimate parameters in a parametric models is the
maximum likelihood method.
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Maximum likelihood

Let y1, . . . , yn be i.i.d. with the PDF f (x , y).

Definition

The likelihood function is defined by

Ln(x) =
n∏

i=1

f (x , yi ).

The log-likelihood function is defined by ℓn(x) = logLn(x).

The likelihood function is simply the joint density of the data, except that
we treat it as a function of the parameter x . The likelihood function is not
a density function: in general, the function Ln(x) does not integrate to 1
with respect to x .
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Definition

The maximum likelihood (ML) estimator is defined as a maximizer of the
likelihood function

x̂ML = argmax
x∈X

Ln(x).

Remarks:

The ML estimator satisfies

Ln(x̂ML) ≥ Ln(x) for all x ∈ X .

It answers the question: Which value of the unknown x is the most
likely to produce the measured data?
The ML estimator may not be unique.
The maximum of the log-likelihood ℓn(x) occurs at the same point as
the maximum of Ln(x). It is often more convenient to work with

x̂ML = argmax
x∈X

ℓn(x).

Multiplying Ln(x) by any positive constant c (not depending on x)
will not change the ML estimator, so the constants in the likelihood
function are often dropped. 432



Example

Assume that y1, . . . , yn
i.i.d.∼ N (µ, 1) for some unknown mean parameter

µ ∈ R. The likelihood function for µ ∈ R is given by

Ln(µ) =
n∏

i=1

1√
2π

e−
1
2
(yi−µ)2 =

1

(2π)n/2
e−

1
2

∑n
i=1(yi−µ)2

and the log-likelihood is given by

ℓn(µ) = −n

2
log(2π)− 1

2

n∑
i=1

(yi − µ)2.

Differentiating this with respect to µ yields

ℓ′n(µ) =
n∑

i=1

(yi − µ) = n(yn − µ).

Setting this to 0 yields the ML estimator µ̂ML = yn. Thus the ML
estimator coincides with the empirical mean of y1, . . . , yn.
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Example

Consider n observations (pairs) (x1, y1), . . . , (xn, yn) of (x , y). Assume that
the values yi are observed values of a random variable y and assume that
the values xi are observed non-random values of x . Assume that the
values yi depend linearly on the values xi through a simple linear model

yi = b0 + b1xi + εi , i ∈ {1, . . . , n},

where the residuals are assumed to be Gaussian εi
i.i.d.∼ N (0, σ2), σ > 0.

Writing b = (b0, b1), the ML estimator b̂ = b̂ML is given by

b̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
= ρ̂(x , y)

sy
sx
,

b̂0 = y − b̂1x .
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Example

Assume that y1, . . . , yn ∈ Rk are i.i.d. realizations of random variable y ,
which come from some mathematical model

yi = F (x) + εi ,

where x ∈ Rd is the unknown parameter, F : Rd → Rk is a function, and
ε1, . . . , εk are i.i.d. realizations of measurement noise ε with PDF ρn.

Now

P(y ∈ B) = P(F (x) + ε ∈ B) = P(ε ∈ B − F (x)) =

∫
B−F (x)

ρn(t) dt

=

∫
B
ρn(t − F (x))dt for all events B.

This means that f (x , yi ) = ρn(yi − F (x)), and the likelihood function is

Ln(x) =
n∏

i=1

ρn(yi − F (x)).
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Example

Assume that y ∈ Rk is an observation of the mathematical model

y = F (x) + ε,

where x ∈ Rd is the unknown parameter and ε ∼ N (0, σ2I ) is Gaussian
measurement noise, with σ > 0 and I is the k × k identity matrix. In this
case, the noise has the PDF

ρn(ε) =
1

(2πσ2)k/2
e−

1
2σ2 ∥ε∥2

and the likelihood function is given by

Ln(x) =
1

(2πσ2)k/2
e−

1
2σ2 ∥y−F (x)∥2 .

The ML estimator can therefore be found as the minimizer(!)

x̂ML = argmin
x∈Rd

∥y − F (x)∥2.
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Example
Assume that y ∈ Rk is an observation of the linear mathematical model

y = Ax + ε,

where x ∈ Rd is the unknown parameter, A ∈ Rk×d is a matrix, and
ε ∼ N (0, σ2I ) is Gaussian measurement noise, with σ > 0 and I is the
k × k identity matrix. This corresponds to F (x) = Ax in the previous
example, with the likelihood

Ln(x) =
1

(2πσ2)k/2
e−

1
2σ2 ∥y−Ax∥2

and ML estimator
x̂ML = argmin

x∈Rd

∥y − Ax∥2.

If ATA is invertible, then the ML estimator is precisely the least squares
solution

ATAx̂ML = ATy .

(If ATA is not invertible, then the ML estimator is not unique.)
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Computing ML estimates

In special cases the ML estimator x̂ML can be solved analytically, but more
often, the optimization problem needs to be solved numerically. If the
log-likelihood ℓn is twice continuously differentiable, one can use, e.g., the
Newton–Raphson algorithm. Suppose that the parameter x ∈ R is
one-dimensional. If x is a good guess for x̂ML (in the sense that x ≈ x̂ML,
then Taylor’s theorem implies that

0 = ℓ′n(x̂ML) ≈ ℓ′n(x) + (x̂ML − x)ℓ′′n(x).

Solving for x̂ML yields x̂ML = x − ℓ′n(x)
ℓ′′n (x)

.

Repeating this process iteratively yields the following algorithm.

Let x0 ∈ R be an initial guess for x̂ML.

for j = 1, 2, . . ., do

Set xj = xj−1 − ℓ′n(xj−1)
ℓ′′n (xj−1)

until |ℓ′n(xj)| < TOL
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In the multiparameter case x ∈ Rd , the ML estimator x̂ML is a vector and
the method is the following:

Let x0 ∈ Rd be an initial guess for x̂ML.

for j = 1, 2, . . ., do
Set xj = xj−1 − H(xj−1)

−1∇ℓ(xj−1)

until ∥∇ℓn(xj)∥ < TOL

Here, H(x) is the d × d Hessian matrix defined by

H(x) =



∂2

∂x21
ℓn(x)

∂2

∂x1∂x2
ℓn(x) · · · ∂2

∂x1∂xd
ℓn(x)

∂2

∂x2∂x1
ℓn(x)

∂2

∂x22
ℓn(x) · · · ∂2

∂x2∂xd
ℓn(x)

...
...

. . .
...

∂2

∂xd∂x1
ℓn(x)

∂2

∂xd∂x2
ℓn(x) · · · ∂2

∂x2d
ℓn(x)

 .

Remark. Depending on the application, any other reasonable or natural
optimization procedure might also work: e.g., Gauss–Newton method,
Levenberg–Marquardt method, conjugate gradient or Krylov subspace
methods, (stochastic) gradient descent. . .
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Properties of the ML estimator

The ML estimator has many desirable qualities under somewhat relaxed
assumptions:

The ML estimator is consistent: x̂ML
P→ x⋆ as n → ∞, where x⋆

denotes the true value of the parameter x .
The ML estimator is asymptotically normal: x̂ML−x⋆

ŝe
→ N (0, 1).

The ML estimator is asymptotically optimal: roughly, this means that
among all well-behaved estimators, the ML estimator has the smallest
variance, at least for large samples.
...

As the sample size n → ∞, the ML estimator is an ideal estimator from a
frequentist point of view.

However, in some applications one might have a limited amount of data
and/or the data generation is not repeatable, so the asymptotic properties
of the ML estimator may not be of much use. Next week, we will start
discussing the Bayesian paradigm, where the fundamental conceit is that
only a finite amount of data is available: probability is not defined as the
limit of relative frequencies, but as a (subjective) degree of belief. 440


