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The linear Gaussian setting

In these notes we study the linear Gaussian setting, where the forward map
F is linear and both the prior distribution and the distribution of the
observational noise ε are Gaussian.

It arises frequently in applications, either directly or in the form of
posterior distributions that are asymptotically Gaussian in the large data
limit. It also allows computing explicit solutions which can be used to gain
a general understanding. Apart from that, many methods employed in a
nonlinear or non-Gaussian setting build on ideas from the linear Gaussian
case by performing linearization or Gaussian approximation.

535



Let us suppose that the unknown x ∈ Rd and the data y ∈ Rk follow the
relation

y = Ax + ε, (1)

where

1. The forward model is linear, i.e., A ∈ Rk×d .
2. The prior distribution is Gaussian: x ∼ N (x0, Γpr), where x0 ∈ Rd

and Γpr ∈ Rd×d is symmetric and positive definite.
3. The noise is Gaussian: ε ∼ N (ε0, Γn), where ε0 ∈ Rk and Γn ∈ Rk×k

is symmetric and positive definite.
4. x and ε are independent.

Theorem

Under assumptions 1–4, the posterior distribution corresponding to (1) is
Gaussian with x |y ∼ N (µpost, Γpost), where we have the posterior mean

µpost = (Γ−1
pr + ATΓ−1

n A)−1(ATΓ−1
n (y − ε0) + Γ−1

pr x0)

and covariance
Γpost = (Γ−1

pr + ATΓ−1
n A)−1.
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Proof. Noting that Γpost = (Γ−1
pr + ATΓ−1

n A)−1 and
µpost = Γpost(A

TΓ−1
n (y − ε0) + Γ−1

pr x0), we obtain

f (x |y) ∝ exp

(
− 1

2
(y − Ax − ε0)

TΓ−1
n (y − Ax − ε0)

)
exp

(
− 1

2
(x − x0)

TΓ−1
pr (x − x0)

)
= exp

(
− 1

2

(
yTΓ−1

n y − yTΓ−1
n Ax − yTΓ−1

n ε0

− xTATΓ−1
n y + xTATΓ−1

n Ax + xTATΓ−1
n ε0

− εT0 Γ
−1
n y + εT0 Γ

−1
n Ax + εT0 Γ

−1
n ε0

+ xTΓ−1
pr x − 2xTΓ−1

pr x0 + xT
0 Γ−1

pr x0
))

= exp

(
− 1

2

(
xT(Γ−1

pr + ATΓ−1
n A)︸ ︷︷ ︸

=Γ−1
post

x − 2xT(ATΓ−1
n (y − ε0) + Γ−1

pr x0)︸ ︷︷ ︸
=Γ−1

postµpost

))
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Proof. Noting that Γpost = (Γ−1
pr + ATΓ−1

n A)−1 and
µpost = Γpost(A

TΓ−1
n (y − ε0) + Γ−1

pr x0), we obtain

f (x |y) ∝ exp

(
− 1

2
(y − Ax − ε0)

TΓ−1
n (y − Ax − ε0)

)
exp

(
− 1

2
(x − x0)

TΓ−1
pr (x − x0)

)
∝ exp

(
− 1

2

(
yTΓ−1

n y − xTATΓ−1
n y−yTΓ−1

n ε0

− xTATΓ−1
n y + xTATΓ−1

n Ax + xTATΓ−1
n ε0

−εT0 Γ−1
n y + xTATΓ−1

n ε0ε
T
0 Γ

−1
n ε0

+ xTΓ−1
pr x − 2xTΓ−1

pr x0+xT
0 Γ−1

pr x0
))

= exp

(
− 1

2

(
xT(Γ−1

pr + ATΓ−1
n A)︸ ︷︷ ︸

=Γ−1
post

x − 2xT(ATΓ−1
n (y − ε0) + Γ−1

pr x0)︸ ︷︷ ︸
=Γ−1

postµpost

))
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Proof. Noting that Γpost = (Γ−1
pr + ATΓ−1

n A)−1 and
µpost = Γpost(A

TΓ−1
n (y − ε0) + Γ−1

pr x0), we obtain

f (x |y) ∝ exp

(
− 1

2
(y − Ax − ε0)

TΓ−1
n (y − Ax − ε0)

)
exp

(
− 1

2
(x − x0)

TΓ−1
pr (x − x0)

)
∝ exp

(
− 1

2

(
yTΓ−1

n y − xTATΓ−1
n y−yTΓ−1

n ε0

− xTATΓ−1
n y + xTATΓ−1

n Ax + xTATΓ−1
n ε0

−εT0 Γ−1
n y + xTATΓ−1

n ε0ε
T
0 Γ

−1
n ε0

+ xTΓ−1
pr x − 2xTΓ−1

pr x0+xT
0 Γ−1

pr x0
))

= exp

(
− 1

2

(
xT(Γ−1

pr + ATΓ−1
n A)︸ ︷︷ ︸

=Γ−1
post

x − 2xT(ATΓ−1
n (y − ε0) + Γ−1

pr x0)︸ ︷︷ ︸
=Γ−1

postµpost

))
.
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On the previous slide, we arrived at

f (x |y) ∝ exp

(
− 1

2

(
xTΓ−1

postx − 2xTΓ−1
postµpost

))
.

To finish the proof, we “complete the square” by multiplying and dividing by
exp(− 1

2
µT
postΓ

−1
postµpost). Since this term does not depend on x , we can absorb the

denominator into the implied coefficient to obtain

f (x |y) ∝ exp

(
− 1

2

(
xTΓ−1

postx − 2xTΓ−1
postµpost

))
exp

(
− 1

2
µT
postΓ

−1
postµpost

)
= exp

(
− 1

2

(
xTΓ−1

postx − 2xTΓ−1
postµpost + µT

postΓ
−1
postµpost

))
= exp

(
− 1

2

(
(x − µpost)

TΓ−1
post(x − µpost) + 2xTΓ−1

postµpost − 2xTΓ−1
postµpost

))
= exp

(
− 1

2

(
(x − µpost)

TΓ−1
post(x − µpost)

))
,

as desired.
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Remark: The previous proof shows that if x ∼ N (x0, Γpr) and
ε ∼ N (ε0, Γn), then

x |y ∼ N (µpost, Γpost),

where

Γpost = (Γ−1
pr + ATΓ−1

n A)−1 (2)

µpost = Γpost(A
TΓ−1

n (y − ε0) + Γ−1
pr x0). (3)

One also has the following alternative representations for the posterior
mean

µpost = x0 + ΓprA
T(AΓprA

T + Γn)
−1(y − Ax0 − ε0) (4)

and the posterior covariance

Γpost = Γpr − ΓprA
T(AΓprA

T + Γn)
−1AΓpr. (5)

Formula (5) can be proved, e.g., by using the
Sherman–Morrison–Woodbury formula on (2). Formula (4) can be proved
by plugging the formula (5) into (3) and simplifying the expression.
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As the posterior distribution is Gaussian, its mean and its mode coincide.
This means that the conditional mean estimator and the MAP estimator
coincide in the linear Gaussian setting.

Corollary

The conditional mean estimator and the maximum a posteriori estimator
coincide in the linear Gaussian setting and are given by
xCM = xMAP = µpost.
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Example

Let Γn = σ2I , ε0 = 0, Γpr = γ2I , x0 = 0, and set λ = σ
γ . Then µpost

minimizes
Jλ(x) := ∥y − Ax∥2 + λ2∥x∥2.

and therefore satisfies

(ATA+ λ2I )µpost = ATy . (6)

This example provides a connection between Bayesian inference and
variational regularization: Jλ can be interpreted as the objective functional
in a linear regression model with a regularization term λ2∥x∥2. Equation
(6) for µpost is then exactly the normal equation.

In the general case, the formula

µpost = (Γ−1
pr + ATΓ−1

n A)−1(ATΓ−1
n (y − ε0) + Γ−1

pr x0)

can thus be viewed as the solution to a generalized normal equation. This
point of view helps to understand the structure of Bayesian inference by
linking it to well-understood optimization approaches.
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Numerical example: one-dimensional deconvolution

Suppose that we are interested in estimating a signal g : [0, 1]→ R from
noisy, blurred observations modeled as

yi = y(si ) =

∫ 1

0
K (si , t)g(t) dt + εi , i ∈ {1, . . . , k},

where the blurring kernel is

K (s, t) = exp

(
− 1

2ω2
(s − t)2

)
, ω = 0.5,

and we have Gaussian measurement noise ε ∼ N (0, Γnoise) with a
symmetric, positive definite covariance matrix Γnoise.
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Discrete model

Midpoint rule:

yi =

∫ 1

0
K (si , t)g(t) dt + εi ≈

1

d

d∑
j=1

K (si , tj)xj + εi ,

where tj =
j
d −

1
2d and xj = g(tj) for j ∈ {1, . . . , d}.

If we have si =
i
k −

1
2k for i ∈ {1, . . . , k}, then we have the discrete linear

model

y = Ax + ε, where Ai ,j =
1

d
K (si , tj).

To employ the Bayesian approach, we treat y , ε, and x as random
variables. We assume that ε is Gaussian noise with variance σ2I ,

ε ∼ N (0, σ2I ), ν(ε) ∝ exp
(
− 1

2σ2
∥ε∥2

)
.

The likelihood is then given by

f (y |x) = ν(y − Ax) ∝ exp
(
− 1

2σ2
∥y − Ax∥2

)
.
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Next, we have to choose a prior distribution for the unknown. Assume
that we know that g(0) = g(1) = 0 and that g is quite smooth, that is,
the value of g(t) in a point is more or less the same as in its neighbor. We
will then model the unknown as

xj =
1

2
(xj−1 + xj+1) +Wj , j = 1, . . . , k , (7)

where the term Wj follows a Gaussian distribution N (0, γ2).

The variance γ2 determines how much the reconstructed function x
departs from the smoothness model xj =

1
2(xj−1 + xj+1). We can write (7)

as

Lx = W , where L :=
1

2



2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2


.

This leads to the so-called smoothness prior

f (x) ∝ exp
(
− 1

2γ2
∥Lx∥2

)
.
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Let L = tridiag(−1, 2,−1) and consider the following priors

fpr,1(x) ∝ exp

(
− 1

2γ2
∥x − x0∥2

)
with covariance Γpr,1 = γ2I ;

fpr,2(x) ∝ exp

(
− 1

2γ2
∥L(x − x0)∥2

)
= exp

(
− 1

2γ2
(x − x0)

T(LTL)(x − x0)

) with covariance
Γpr,2 = γ2(LTL)−1,

where x0 ∈ Rd is the prior mean (assumed to be the same in both cases).
Hence

xj = x0 + Γpr,jA
TG−1

j (y − Ax0 − ε0),

Γpost,j = Γpr,j − Γpr,jA
TG−1

j AΓpr,j ,

where Gj = AΓpr,jA
T + Γnoise and Γnoise = σ2I .
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For the numerical experiment, we simulate measurements using the
(smooth) ground truth signal

g(t) = 8t3 − 16t2 + 8t,

which satisfies g(0) = g(1) = 0. The measurements are contaminated
with zero-mean 10% relative noise (σ ≈ 0.0618) and we set d = k = 120.

Remark: We use a higher resolution model to simulate the measurement
data. To achieve this, we generate the measurement data using a denser
grid and then interpolate the forward solution onto a coarser
computational grid, which is actually used to compute the reconstruction.
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Since both the prior and the posterior are now Gaussian, we can use the
coloring transformation to draw samples from the prior and posterior.

We also draw the posterior mean and the 2σ credibility envelopes.

See the script deconv.py on the course webpage.
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A note on marginal Gaussian distributions

Let
f (x) ∝ exp(−1

2(x − µ)TΓ−1(x − µ))

be a multivariate Gaussian PDF with mean µ and positive definite and
symmetric covariance matrix Γ.

Q: What is Γii?
A: σ2

i := Γii is the variance of the marginal distribution with PDF

f (xi ) =

∫
Rn−1

f (x1, . . . , xi , . . . , xn) dx1 · · · dxi−1 dxi+1 · · · dxn,

which is itself a (univariate) Gaussian PDF with mean µi .

This is why we can obtain the credibility envelopes by taking the square
roots of the diagonal values of Γpost,j .
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Relation to conjugate priors

The linear Gaussian setting is a special case of a more general technique,
where the prior is chosen in such a way that, together with the likelihood
function, the resulting posterior density belongs to the same probability
distribution family as the prior. In this case, the prior and posterior are
then called conjugate distributions, and the prior is called a conjugate prior
for the likelihood function.

A conjugate prior is an algebraic convenience, giving a closed form
expression for the posterior. In consequence, the CM estimator, MAP
estimator, and variance typically also have closed form expressions and it is
not necessary to use numerical integration or optimization to characterize
the statistics of the posterior.

A list of the most commonly used conjugate priors can be found, e.g., at
https://en.wikipedia.org/wiki/Conjugate_prior
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Kalman filter
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So far we have discussed measurement models with a static target:

yj = F (x) + εj , εj
i.i.d.∼ N (0, γ2I ).

Examples where the condition may not be valid:

EEG

Target tracking

Weather forecasting
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Dynamic observation models

More general observation model:

yj = F (xj) + εj , j = 1, 2, . . . , J.

The observations cannot be integrated unless we have a dynamic prior
model.

One of the simplest dynamic prior models is a 1-Markov evolution model

xj+1 = G (xj) + ξj+1, j = 0, 1, . . . , J − 1,

where G : Rd → Rd is presumably known and ξj+1 is an innovation
process.

556



Examples

Static measurement: G (x) = x , ξj+1 = 0.
Random walk model (often used in lack of anything more
sophisticated):

xj+1 = xj + ξj+1, ξj+1 ∼ N (0, σ2I ).

First order differential equation: assume that the unknown is a
time-dependent vector x(t) ∈ Rd satisfying ideally the differential
equation

x ′(t) = f (x(t), t).

Time discretization: let tj = jh, j = 0, 1, . . ., and write xj = x(tj).
Then we can use finite differences, e.g., forward Euler method

xj+1 = xj + hf (xj , tj) + ξj+1

or backward Euler method

xj+1 = xj + hf (xj+1, tj+1) + ξj+1,

where ξj+1 accounts for discretization errors as well as possible
deviations from the ideal. 557



Basic form of Bayes filtering

Evolution-observation model:

xj+1 = G (xj) + ξj+1, j = 0, 1, . . . , J − 1,

yj+1 = F (xj+1) + εj+1, j = 0, 1, . . . , J − 1.

The observations y1, . . . , yJ and the prior probability density of x0 are
given.
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Adaptive algorithm

The goal is an algorithm which works as follows:

Given the density of x0, predict the density of x1 using the prior
evolution model.

Using the predicted density of x1 as prior, calculate the posterior
density of x1|y1.
Using the posterior density of x1|y1, predict the density of x2.

Using the predicted density of x2 as prior, calculate the posterior
density of x2|y1, y2.
Continue similarly.
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f (x0)
↓

f (x1|x0)→ evolution updating
↓

f (x1)
↓

observation updating ← f (y1|x1)
↓

f (x1|y1)
↓

f (x2|x1)→ evolution updating
↓

f (x2|y1)
↓

observation updating ← f (y2|x2)
↓

f (x2|y1, y2)
↓
...
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Prediction step: Given the density of xj , calculate the density of
xj+1 from

xj+1 = G (xj) + ξj+1. (propagation problem)

Correction step: Given the prior density of xj+1, calculate the
posterior density of xj+1|yj+1 using the observational model

yj+1 = F (xj+1) + εj+1. (inference problem)
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Particular approaches

Linear model, Gaussian innovation and error: classical Kalman
filtering.

Linearization of non-linear evolution (or observation) model: extended
Kalman filtering.

Nonlinear and/or non-Gaussian models: particle filtering.
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Kalman filter

Consider the linear (G (·) = M·, F (·) = H·) evolution-observation system

xj+1 = Mxj + ξj+1, ξj+1
i.i.d.∼ N (0,Σ),

yj+1 = Hxj+1 + εj+1, εj+1
i.i.d.∼ N (0, Γ).

Prediction: Suppose xj ∼ N (mj ,Cj). Then

xj+1 = Mxj + ξj+1 ∼ N (m̂j+1, Ĉj+1),

where m̂j+1 = Mmj and Ĉj+1 = MCjM
T +Σ.

Correction: Linear Gaussian setting implies xj+1|yj+1 ∼ N (mj+1,Cj+1),
where

mj+1 = m̂j+1 + Ĉj+1H
T(HĈj+1H

T + Γ)−1(yj+1 − Hm̂j+1),

Cj+1 = Ĉj+1 − Ĉj+1H
T(HĈj+1H

T + Γ)−1HĈj+1.

Remark: The expensive step in Kalman filtering is the computation of the
so-called Kalman gain matrix:

Kj+1 = Ĉj+1H
T(HĈj+1H

T + Γ)−1.
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Kalman filter algorithm

Given: Initial distribution for x0 ∼ N (m0,C0), where m0 ∈ Rd and
C0 ∈ Rd×d is symmetric and positive definite.

for j = 0, 1, 2, . . . , J − 1, do

Prediction step:

m̂j+1 = Mmj

Ĉj+1 = MCjM
T +Σ

Correction step:

Kj+1 = Ĉj+1H
T(HĈj+1H

T + Γ)−1

mj+1 = m̂j+1 + Kj+1(yj+1 − Hm̂j+1)

Cj+1 = Ĉj+1 − Kj+1HĈj+1

end for

Output: Predicted distributions N (m̂j+1, Ĉj+1) and filtering distributions
for xj+1|y1, . . . , yj+1 ∼ N (mj+1,Cj+1), j = 0, . . . , J − 1.
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Extended Kalman filter (non-linear evolution model)

Consider non-linear G : Rd → Rd and linear F (·) = H· with

xj+1 = G (xj) + ξj+1, ξj+1
i.i.d.∼ N (0,Σ),

yj+1 = Hxj+1 + εj+1, εj+1
i.i.d.∼ N (0, Γ),

with x0 ∼ N (m0,C0).

Prediction: Suppose xj ∼ N (mj ,Cj). We can linearize

xj+1 = G (xj) + ξj+1 ≈ G (mj) + DG (mj)(xj −mj) + ξj+1.

An affine transformation is still Gaussian, so we obtain the approximations

m̂j+1 = G (mj), Ĉj+1 = DG (mj)CjDG (mj)
T +Σ.

Correction: Now that xj+1 ∼ N (m̂j+1, Ĉj+1), we can use the linear
Gaussian setting to obtain xj+1|yj+1 ∼ N (mj+1,Cj+1) with

mj+1 = m̂j+1 + Ĉj+1H
T(HĈj+1H

T + Γ)−1(yj+1 − Bm̂j+1),

Cj+1 = Ĉj+1 − Ĉj+1H
T(HĈj+1H

T + Γ)−1HĈj+1.

576



Ensemble Kalman filter (non-linear evolution model)

Consider

xj+1 = G (xj) + ξj+1, ξj+1
i.i.d.∼ N (0,Σ),

yj+1 = Hxj+1 + εj+1, εj+1
i.i.d.∼ N (0, Γ),

with x0 ∼ N (m0,C0).

The computation of the analytical predictive covariances and (in the
non-linear setting) the Jacobi matrix become computationally inefficient
and expensive for high-dimensional systems. The basic idea of ensemble
Kalman filter is as follows:

1 Draw a sample from the initial distribution of x0 (“initial ensemble”)

2 Replace the predictive mean m̂j+1 and covariance Ĉj+1 as well as the
filtering mean mj+1 and covariance Cj+1 with their corresponding
sample means and covariances by propagating the initial ensemble
through the evolution-observation model.
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Ensemble Kalman filter algorithm

Given: Ensemble size N. Initial ensemble {x (i)
0 }

N
i=1 drawn from the initial distribution of

x0 ∼ N (m0,C0), where m0 ∈ Rd and C0 ∈ Rd×d is symmetric and positive definite.
Parameter s ∈ {0, 1}.
for j = 0, 1, 2, . . . , J − 1, do

Prediction step:

draw ξ
(i)
j+1

i.i.d.∼ N (0,Σ), i = 1, . . . ,N,

x̂
(i)
j+1 = G(x

(i)
j ) + ξ

(i)
j+1, i = 1, . . . ,N,

m̂j+1 =
1

N

N∑
i=1

x̂
(i)
j+1 and Ĉj+1 =

1

N

N∑
i=1

(x̂
(i)
j+1 − m̂j+1)(x̂

(i)
j+1 − m̂j+1)

T.

Correction step:

draw ε
(i)
j+1

i.i.d.∼ N (0, Γ), i = 1, . . . ,N,

y
(i)
j+1 = yj+1 + sε

(i)
j+1, i = 1, . . . ,N,

Kj+1 = Ĉj+1H
T(HĈj+1H

T + Γ)−1,

x
(i)
j+1 = x̂

(i)
j+1 + Kj+1(y

(i)
j+1 − Hx̂

(i)
j+1), i = 1, . . . ,N.

end for

Output: Ensembles {x (i)
j }

N
i=1, j = 0, . . . , J.
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Remark:

Setting the parameter s = 1 is suitable at approximating the Kalman

filter in linear Gaussian settings: if each prediction particle x̃
(i)
j+1 is

distributed according to a non-degenerate Gaussian distribution, then

in the linear Gaussian setting the “corrected” particle x
(i)
j+1 will be

Gaussian with mean and covariance that agree with the usual Kalman
filter formulae.

Setting the parameter s = 0 is natural if viewing the algorithm as a
sequential optimizer in problems where the filtering distributions are
not well approximated by Gaussians.
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Numerical example

We wish to track the state xk =

[
pk
vk

]
∈ R2 of a moving particle at

discrete times tk = k∆t, k = 0, 1, 2, . . .. The first component pk
corresponds to the position of the particle while the second component
vk = ṗk is its velocity at time k = 0, 1, 2, . . .. Let us also denote the
unknown acceleration of the particle as ak = v̇k = p̈k for k = 0, 1, 2, . . ..
We have the following dynamics:{
pk = pk−1 + vk−1∆t + 1

2ak−1(∆t)2

vk = vk−1 + ak−1∆t
⇔ xk =

[
1 ∆t
0 1

]
︸ ︷︷ ︸

=:M

xk−1+

[
1
2(∆t)2

∆t

]
ak−1.

If we assume that ak−1
i.i.d.∼ N (0, 1), then the innovation process is

ξk :=

[
1
2(∆t)2

∆t

]
ak−1 ∼ N (0,Σ), where Σ :=

[
1
2(∆t)2

∆t

] [
1
2(∆t)2 ∆t

]
=

[
1
4(∆t)4 1

2(∆t)3
1
2(∆t)3 (∆t)2

]
. This yields the evolution model

xk = Mxk−1 + ξk , ξk
i.i.d.∼ N (0,Σ).
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Meanwhile, we can only measure the location of the particle, so the
observation model is given by

yk = Hxk + εk , εk
i.i.d.∼ N (0, γ2),

where H :=
[
1 0

]
and yk is a noisy measurement of the particle’s

location at time k, with the noise level assumed to be γ := 1.

We can now implement the Kalman filter for this model problem. We can
assume that the initial position of the particle is perfectly known:

x0 = E[x0] =
[
0
0

]
and C0 =

[
0 0
0 0

]
∈ R2×2.

The Kalman filter can be used to obtain the mean and covariance of the
(Gaussian) filtering distribution (pk , vk)|y1, . . . , yk for k = 1, 2, 3, . . .. We
can plot the means of the filtered positions (tk ,E[pk |y1, . . . , yk ]) and
velocities (tk ,E[vk |y1, . . . , yk ]).

The implementation is left as an exercise.
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The true trajectory of the particle was x(t) = 0.1(t2 − t) (left figure) with
velocity ẋ(t) = 0.2t − 0.1 (right figure). The observations at time points
tk = k∆t, with ∆t = 0.01 and k = 1, 2, . . ., were contaminated with centered,
unit-variance Gaussian noise (left figure). The red graphs correspond to the
means of the filtered positions (tk ,E[pk |y1, . . . , yk ]) (left figure) and velocities
(tk ,E[vk |y1, . . . , yk ]) (right figure).
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Remarks:

The Kalman filter is optimal in the sense that it gives the best
estimator of the mean in an online setting.

In the linear case (G (·) = M·), the ensemble Kalman filter converges
to the Kalman filter. When applicable, the ensemble Kalman filter is
much more efficient than particle filters. A primary advantage of
ensemble methods is that they can provide good state estimation
even when the number of particles is not large.
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Appendix: General evolution-observation model and particle filters
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General evolution-observation model and particle filters

Consider the more general model

xj+1 = G (xj , ξj+1), j = 0, 1, . . . , J − 1,

yj+1 = F (xj+1, εj+1), j = 0, 1, . . . , J − 1.

The functions F and G are assumed to be known. We also assume that
ξj+1 ⊥ xj and εj+1 ⊥ xj+1.

Observation and evolution models may be cumbersome or impossible to
linearize (e.g., non-differentiable or no closed form). One may try Monte
Carlo methods to simulate the distributions by random samples.

The goal in particle filter methods is to produce sequentially an ensemble

of random samples {x (1)j , . . . , x
(N)
j } distributed according to the

conditional probability distributions f (xj+1|y1, . . . , yj) (prediction) or
f (xj |y1, . . . , yj) (filtering). The vectors x

(i)
j are called particles of the

sample, hence the name particle filter.

One straightforward particle filter method is known as the sampling
importance resampling filter (also known as SIR or bootstrap filter).
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Sampling importance resampling

1 Set j = 0 and generate an initial sample S0 = {x (i)
0 }

N
i=1 by drawing from the

density f (x0). (This may require MCMC if the initial density is complicated, e.g.,
non-Gaussian.)

2 Prediction: Draw ξ
(i)
j+1 from the distribution of ξj+1 and set x̂

(i)
j+1 = G(x

(i)
j , ξ

(i)
j+1) for

1 ≤ i ≤ N. Let Ŝj+1 = {x̂ (i)
j+1}

N
i=1.

3 Correction: Assume that from the observational model yj = F (xj , εj), we can
calculate the likelihood density Cf (yj |xj), j = 1, 2, . . . , J, up to a multiplicative
constant C > 0.† Calculate the importance of each propagated particle

ŵ
(i)
j+1 = Cf (yj+1|x̂ (i)

j+1), 1 ≤ i ≤ N,

and compute their relative importance

w
(i)
j+1 =

ŵ
(i)
j+1

W
, W =

N∑
i=1

ŵ
(i)
j+1.

Resampling: draw a new sample Sj+1 = {x (1)
j+1, . . . , x

(N)
j+1} from the sample Ŝj+1,

with the probability of drawing x̂
(i)
j+1 set equal to w

(i)
j+1. Set j ← j + 1 and return to

step 2.
†E.g., if yj = F (xj) + εj , εj ∼ N (0, γ2I ), then f (yj |xj) ∝ exp(− 1

2γ2 ∥yj − F (xj)∥2).
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