Statistics for Data Science Wintersemester 2023/24

> Vesa Kaarnioja vesa.kaarnioja@fu-berlin.de

FU Berlin, FB Mathematik und Informatik

Second lecture, October 23, 2023

Random variables

Random variables

Let (Ω, \mathbb{P}) be a probability space and let E be a set.

Definition

A random variable (RV) X with values in E is a function $X : \Omega \to E$.

Remark. The set *E* is called the outcome or target space.

- When $E \subset \mathbb{R}$, we say that X is a real-valued random variable.
- When $E \subset \mathbb{R}^n$, $n \ge 2$, we call X a vector-valued random variable.
- When E is countable, we call X a discrete random variable.

In practice, ω is usually not observed directly and analysis is based on the observed random variable $X(\omega)$. Physically, one can think of a realization $X(\omega)$ of a random variable for some $\omega \in \Omega$ as some measurement, or observation performed on a system.

Statistical analysis is based on the *pushforward measure* $B \mapsto \mathbb{P}(X^{-1}(B))$, also called the *probability distribution* or *law* of X, not on \mathbb{P} . Note that here $X^{-1}(B) := \{\omega \in \Omega \mid X(\omega) \in B\}$ is the preimage of B under the mapping X.

As an example of a random variable, consider the sum:

$$X : \{(1,1),(1,2),\ldots,(6,6)\} o \{2,\ldots,12\}, \; X(\omega) = \omega_1 + \omega_2.$$

The identity function $Y(\omega_1, \omega_2) = (\omega_1, \omega_2)$ also defines a random variable. Since $Y : \Omega \to \mathbb{R}^2$, this random variable is vector-valued. Let (Ω, \mathbb{P}) be a probability space and E a set. A random variable $X: \Omega \to E$ induces a probability measure P_X on E, defined by

 $P_X(B) := \mathbb{P}(X^{-1}(B)) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in B\}) \text{ for all subsets } B \subset E,$

which is called the probability distribution (or law) of X.

In other words, a random variable X connects an event $B \subset E$ with a corresponding event $X^{-1}(B) \subset \Omega$ and assigns the probability of $X^{-1}(B)$ to B.

Often, we shall simply denote

$$\{X \in B\} := \{\omega \in \Omega \mid X(\omega) \in B\},\$$

and write

$$P_X(B) = \mathbb{P}(X \in B).$$

Two random variables X and Y with the same target space E are said to be equal in law if they have the same probability function, i.e.,

$$\mathbb{P}(X \in B) = \mathbb{P}(Y \in B)$$
 for all subsets $B \subset E$.

Usually, we are ultimately interested in the laws of random variables, rather than the random variables *per se*.

Two players play Heads and Tails on a fair coin. The coin is thrown 10 times, the gain of player 1 is the total number of Heads, while the gain of player 2 is the total number of Tails. This situation is modeled by introducing $\Omega = \{H, T\}^{10}$ endowed with the uniform distribution, and defining random variables X and Y by

$$X(\omega) = \#\{i = 1, \dots, 10 \mid \omega_i = H\}, \quad Y(\omega) = \#\{i = 1, \dots, 10 \mid \omega_i = T\}$$

for all $\omega \in \{H, T\}^{10}$. Then X + Y = 10. Clearly X and Y are not equal, however they have equal distribution: for all k,

$$\mathbb{P}(X=k) = \frac{1}{2^{10}} \binom{10}{k} = \frac{1}{2^{10}} \binom{10}{10-k} = \mathbb{P}(X=10-k) = \mathbb{P}(Y=k).$$

This implies that X and Y are equal in distribution.

Probability mass function

Let (Ω, \mathbb{P}) be a probability space. Let $X : \Omega \to E$ be a discrete random variable (recall that this means that E is countable). Then, for all $B \subset E$, we can write

$$\mathbb{P}(X \in B) = \sum_{x \in B} p_X(x), \tag{1}$$

where $p_X(x) := \mathbb{P}(X = x)$, $x \in E$. We call p_X the probability mass function (PMF) of X.

Properties. The PMF p_X of a discrete random variable X is

- non-negative $p_X(x) \ge 0$ for all $x \in E$;
- normalized $\sum_{x \in E} p_X(x) = 1$.

In consequence, $0 \le p_X(x) \le 1$ for all $x \in E$.

• The law of a discrete random variable X with countable target space E is uniquely determined by its PMF. This is a consequence of the fact that, by (1),

$$P_X(B) := \mathbb{P}(X \in B) = \sum_{x \in B} p_X(x),$$

meaning that the PMF determines the law of X completely.

Probability density function

Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is called a probability density function (PDF) if the following conditions hold:

•
$$f(x) \geq 0$$
 for all $x \in \mathbb{R};$

•
$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 1.$$

A real-valued random variable X is said to be a continuous random variable if there exists a PDF $f_X : \mathbb{R} \to \mathbb{R}$ such that, for all $a \leq b$, there holds

$$\mathbb{P}(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x. \tag{2}$$

Then we call f_X the probability density function (PDF) of X.

Equation (2) implies for any (measurable) subset $A \subset \mathbb{R}$ that

$$P_X(A) := \mathbb{P}(X \in A) = \int_A f_X(x) \, \mathrm{d}x,$$

meaning that the PDF f_X determines the law of X completely.

Remark. One may think of the PDF as a "continuous" version of the PMF. However, the PMF and PDF are two quite different types of functions.

• The PMF of a *discrete random variable X* can take values between [0, 1], i.e.,

$$\mathbb{P}(X=x)=p_X(x)\in[0,1].$$

• For a continuous random variable X, there always holds

$$\mathbb{P}(X=x)=\int_x^x f_X(y)\,\mathrm{d} y=0.$$

Examples of discrete random variables

Example

Let $p \in (0,1)$. Let X be a random variable with values in $E = \{0,1\}$ and with PMF given by

$$p_X(x) = \begin{cases} 1-p & \text{if } x = 0, \\ p & \text{if } x = 1. \end{cases}$$

Then we say that X is a Bernoulli random variable with parameter p, and we write

 $X \sim \operatorname{Ber}(p).$

A Bernoulli random variable with parameter p represents the result of throwing a coin that falls on Heads with probability p and Tails with probability 1 - p (p = 1/2 is the coin is fair).

Let $p \in (0,1)$ and $n \ge 1$ an integer. Let X be a random variable with values in $\{0, \ldots, n\}$ and with PMF given by

$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x \in \{0,\ldots,n\}.$$

Then we say that X is a binomial random variable with parameters n and p, and we write

 $X \sim \operatorname{Bin}(n, p).$

This corresponds to the probability of the number of times a coin lands on Heads in n tosses of a coin, with p denoting the probability of a coin landing on Heads.

Let $p \in (0,1)$. Let X be a random variable with values in \mathbb{N} and with PMF given by

$$p_X(x) = (1-p)^{x-1}p, \quad x \ge 1.$$

Then we say that X is a geometric random variable with parameter p, and we write

$$X \sim \operatorname{Geo}(p).$$

This corresponds with the probability of hitting Heads for the first time, when the probability of hitting Heads is equal to p.

That is,

$$\mathbb{P}(X=k)=p_X(k)=(1-p)^{k-1}p$$

denotes the probability of hitting Tails for the first k-1 rounds and hitting heads on the k^{th} round.

Let $\lambda > 0$. Let X be a random variable with values in \mathbb{N}_0 and with PMF given by

$$p_X(x) = \mathrm{e}^{-\lambda} rac{\lambda^x}{x!}, \quad x \ge 0.$$

We then say that X is a Poisson random variable with parameter λ , and we write

 $X \sim \text{Poisson}(\lambda).$

Poisson random variables can be used to model the count of rare events such as nuclei decaying in a radioactive sample.

Definition

Let a < b. Let X be a real-valued continuous random variable with PDF

$$f_X(x) = \begin{cases} rac{1}{b-a} & ext{if } a < x < b, \\ 0 & ext{otherwise}, \end{cases} \quad x \in \mathbb{R}.$$

We then say that X is a uniform random variable in [a, b], and we write

 $X \sim \mathcal{U}(a, b).$

Definition

Let $\lambda > 0$. Let X be a real-valued continuous random variable with PDF

$$f_X(x) = egin{cases} \lambda \mathrm{e}^{-\lambda x} & ext{if } x \geq 0, \ 0 & ext{if } x < 0, \end{cases} \quad x \in \mathbb{R}.$$

We then say that X is an exponential random variable with parameter λ , and we write

$$X \sim \operatorname{Exp}(\lambda).$$

Let $\mu\in\mathbb{R}$ and $\sigma>0.$ Let X be a real-valued continuous random variable with PDF given by

$$f_X(x)=rac{1}{\sqrt{2\pi\sigma^2}}\mathrm{e}^{-rac{(x-\mu)^2}{2\sigma^2}},\quad x\in\mathbb{R}.$$

We then say that X is a Gaussian random variable with parameters μ and σ^2 , and we write

$$X \sim \mathcal{N}(\mu, \sigma^2).$$

The parameter μ is called the mean and σ is called the standard deviation of X.

Cumulative distribution function

The cumulative distribution function (CDF) of a real-valued random variable X is the function $F_X : \mathbb{R} \to [0, 1]$ given by

$$F_X(x) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \le x\}) \;.$$
 (or shortly $= \mathbb{P}(X \le x))$

Note that the CDF is defined for any random variable taking values in \mathbb{R} , whether discrete or continuous.

Proposition

Let $F_X : \mathbb{R} \to [0,1]$ be the CDF of a real-valued random variable X. Then

- F_X is non-decreasing: if $a \le b$, then $F_X(a) \le F_X(b)$.
- F_X is right-continuous: for all $a \in \mathbb{R}$,

$$F_X(a) = \lim_{x \to a+} F_X(x).$$

• $F_X(-\infty) := \lim_{x \to -\infty} F_X(x) = 0$ and $F_X(\infty) := \lim_{x \to \infty} F_X(x) = 1$.

One can read off relevant information on the distribution of X from its CDF.

Lemma

Let $F_X : \mathbb{R} \to [0,1]$ be the CDF of a real-valued random variable X. Then

• For any real numbers a < b,

$$\mathbb{P}(a < x \leq b) = F_X(b) - F_X(a).$$

• For any $a \in \mathbb{R}$,

$$\mathbb{P}(X > a) = 1 - F_x(a).$$

• For any $x \in \mathbb{R}$,

$$\mathbb{P}(X = x) = F_X(x) - \lim_{y \to x^-} F_X(y).$$

Remark. In particular, if X is a continuous random variable, we have $F_X(x) = \lim_{y\to x-} F_X(y)$ for all $x \in \mathbb{R}$; no jumps occur. For a discrete random variable, the situation is different: F_X is then a pure-jump function, meaning that it increases purely through jumps.

Proposition

Let X be a discrete random variable taking values in a countable subset E of \mathbb{R} . Denoting the PMF of X by p_X and its CDF by F_X , we have

$$F_X(a) = \sum_{\substack{x \in E \\ x \leq a}} p_X(x)$$
 for all $a \in \mathbb{R},$
 $p_X(x) = F_X(x) - \lim_{y \to x-} F_X(y).$

Proof. By the definition of the PMF, there holds

$$\mathbb{P}(X \in B) = \sum_{x \in B} p_X(x)$$
 for all subsets $B \subset E$.

Setting $B = \{x \in E \mid x \le a\}$ yields the first relation.

For the second relation, we note that

$$\{X=x\}=\bigcap_{n\geq 1}E_n,$$

where the sets $E_n := \{X \in (x - \frac{1}{n}, x]\}$ form a decreasing sequence of events $E_{n+1} \subset E_n$ for $n \ge 1$. In this case, there holds

$$\mathbb{P}\bigg(\bigcap_{n\geq 1} E_n\bigg) = \lim_{n\to\infty} \mathbb{P}(E_n)$$
$$= \lim_{n\to\infty} \left(F_X(x) - F_X(x-\frac{1}{n})\right)$$
$$= F_X(x) - \lim_{y\to x-} F_X(y),$$

as desired.

Relationship between the CDF and PDF (continuous case)

Proposition

Let X be a continuous real-valued random variable. Denoting the PDF of X by f_X , and its CDF by F_X , we have

$$F_X(a) = \int_{-\infty}^a f_X(y) \,\mathrm{d} y$$
 for all $a \in \mathbb{R}$.

In addition, if F_X is differentiable at $x \in E$, we have

$$f_X(x)=F_X'(x).$$

Proof. For the first statement, note that for all u < a there holds

$$F_X(a) - F_X(u) = \mathbb{P}(X \in (u, a]) = \mathbb{P}(X \in [u, a]) = \int_u^a f_X(y) \, \mathrm{d}y,$$

where we used the fact that $\mathbb{P}(X = u) = 0$ since X is a continuous random variable. Letting $u \to -\infty$ and recalling $F_X(-\infty) = 0$, we obtain $F_X(a) = \int_{-\infty}^a f_X(y) \, dy$. The second statement follows from the fundamental theorem of calculus (F_X is the antiderivative of f_X).

Proposition

The probability distribution of a real-valued random variable is uniquely determined by its CDF.

Proof. We give a proof in the discrete case. Let X and Y be two real-valued random variables with the same CDF:

$$F_X(x) = F_Y(x)$$
 for all $x \in \mathbb{R}$.

Then by the previous discussion,

$$p_X(x) = F_X(x) - \lim_{y \to x-} F_X(y) = F_Y(x) - \lim_{y \to x-} F_Y(y) = p_Y(x).$$

Thus X and Y have the same PMF, meaning that X and Y are equal in law.

Quantile function

Definition (Revised 30.10.2023)

Let X be a real-valued random variable with CDF F. The generalized inverse F^{-1} : $(0,1) \rightarrow \mathbb{R}$,

$$F^{-1}(q)=\inf\{x\in\mathbb{R}\mid F(x)\geq q\},\quad q\in(0,1),$$

is called the quantile function of X.

- If F is strictly increasing, then the quantile function is the inverse function of F.
- For example, the CDF and inverse CDF of a Bernoulli random variable $X \sim \text{Ber}(\frac{1}{2})$

are
$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{1}{2} & \text{if } 0 \le x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$
 and $F^{-1}(q) = \begin{cases} 0 & \text{if } 0 < q \le \frac{1}{2} \\ 1 & \text{if } \frac{1}{2} < q < 1. \end{cases}$

Remark. Another way to define the quantile function is $Q(q) = \inf\{x \in \mathbb{R} \mid F(x) > q\}$, $q \in (0, 1)$. For the Bernoulli random variable $X \sim \operatorname{Ber}(\frac{1}{2})$, we would have $Q(q) = \begin{cases} 0 & \text{if } 0 < q < \frac{1}{2} \\ 1 & \text{if } \frac{1}{2} \leq q < 1 \end{cases}$ (note the difference in the semiopen intervals).

(3)

"Find the smallest value of x such that $F(x) \ge q$."

Proposition

Let X be a real-valued random variable with CDF F_X . Then

• For all
$$q \in (0,1)$$
, $F_X(F_X^{-1}(q)) \ge q$.

If X is a continuous random variable, then F_X(F_X⁻¹(q)) = q for all q ∈ (0,1).

Proof. (1) Let $q \in (0, 1)$. Since $F_X^{-1}(q) = \inf\{x \in \mathbb{R} \mid F(x) \ge q\}$ by definition, we can find a sequence $(a_n)_{n\ge 1}$ of real numbers such that $F_X(a_n) \ge q$ and $a_n \searrow F_X^{-1}(q)$. By the right-continuity of F_X , there holds

$$F_X(F_X^{-1}(q)) = \lim_{n \to \infty} F_X(a_n) \ge q.$$

(2) It suffices to prove the inequality $F_X(F_X^{-1}(q)) \le q$ by (1). Assume to the contrary that $F_X(F_X^{-1}(q)) > q$. Since F_X is the CDF of a continuous random variable, it is continuous. By continuity of F_X , there exists $a \in (-\infty, F_X^{-1}(q))$ such that $F_X(a) > q$, which contradicts the definition of F_X^{-1} .

CDF of a normal random variable

Example

The CDF of a normal random variable $X \sim \mathcal{N}(0,1)$ is often denoted by Φ ,

$$\Phi(x) = \mathbb{P}(X \le x) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-rac{t^2}{2}
ight) \mathrm{d}t, \quad x \in \mathbb{R}.$$

Typical values to remember:

$$\Phi(1.645) = \mathbb{P}(X \le 1.645) \approx 0.95,$$

 $\Phi(1.960) = \mathbb{P}(X \le 1.960) \approx 0.975.$

In this case the CDF Φ is injective and the quantile function, denoted by Φ^{-1} , coincides with its inverse. The above equalities can be recast as

$$\Phi^{-1}(0.95) \approx 1.645,$$

 $\Phi^{-1}(0.975) \approx 1.960.$