Statistics for Data Science

Wintersemester 2023/24

Vesa Kaarnioja
vesa.kaarnioja@fu-berlin.de

FU Berlin, FB Mathematik und Informatik
Second lecture, October 23, 2023

Random variables

Random variables

Let (Ω, \mathbb{P}) be a probability space and let E be a set.
Definition
A random variable (RV) X with values in E is a function $X: \Omega \rightarrow E$.
Remark. The set E is called the outcome or target space.

- When $E \subset \mathbb{R}$, we say that X is a real-valued random variable.
- When $E \subset \mathbb{R}^{n}, n \geq 2$, we call X a vector-valued random variable.
- When E is countable, we call X a discrete random variable.

In practice, ω is usually not observed directly and analysis is based on the observed random variable $X(\omega)$. Physically, one can think of a realization $X(\omega)$ of a random variable for some $\omega \in \Omega$ as some measurement, or observation performed on a system.
Statistical analysis is based on the pushforward measure $B \mapsto \mathbb{P}\left(X^{-1}(B)\right)$, also called the probability distribution or law of X, not on \mathbb{P}. Note that here $X^{-1}(B):=\{\omega \in \Omega \mid X(\omega) \in B\}$ is the preimage of B under the mapping X.

Example, two dice

As an example of a random variable, consider the sum:

$$
X:\{(1,1),(1,2), \ldots,(6,6)\} \rightarrow\{2, \ldots, 12\}, X(\omega)=\omega_{1}+\omega_{2}
$$

The identity function $Y\left(\omega_{1}, \omega_{2}\right)=\left(\omega_{1}, \omega_{2}\right)$ also defines a random variable. Since $Y: \Omega \rightarrow \mathbb{R}^{2}$, this random variable is vector-valued.

Let (Ω, \mathbb{P}) be a probability space and E a set. A random variable $X: \Omega \rightarrow E$ induces a probability measure P_{X} on E, defined by
$P_{X}(B):=\mathbb{P}\left(X^{-1}(B)\right)=\mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in B\}) \quad$ for all subsets $B \subset E$, which is called the probability distribution (or law) of X.

In other words, a random variable X connects an event $B \subset E$ with a corresponding event $X^{-1}(B) \subset \Omega$ and assigns the probability of $X^{-1}(B)$ to B.
Often, we shall simply denote

$$
\{X \in B\}:=\{\omega \in \Omega \mid X(\omega) \in B\}
$$

and write

$$
P_{X}(B)=\mathbb{P}(X \in B) .
$$

Two random variables X and Y with the same target space E are said to be equal in law if they have the same probability function, i.e.,

$$
\mathbb{P}(X \in B)=\mathbb{P}(Y \in B) \quad \text { for all subsets } B \subset E
$$

Usually, we are ultimately interested in the laws of random variables, rather than the random variables per se.

Example

Two players play Heads and Tails on a fair coin. The coin is thrown 10 times, the gain of player 1 is the total number of Heads, while the gain of player 2 is the total number of Tails. This situation is modeled by introducing $\Omega=\{H, T\}^{10}$ endowed with the uniform distribution, and defining random variables X and Y by

$$
X(\omega)=\#\left\{i=1, \ldots, 10 \mid \omega_{i}=H\right\}, \quad Y(\omega)=\#\left\{i=1, \ldots, 10 \mid \omega_{i}=T\right\}
$$

for all $\omega \in\{H, T\}^{10}$. Then $X+Y=10$. Clearly X and Y are not equal, however they have equal distribution: for all k,

$$
\mathbb{P}(X=k)=\frac{1}{2^{10}}\binom{10}{k}=\frac{1}{2^{10}}\binom{10}{10-k}=\mathbb{P}(X=10-k)=\mathbb{P}(Y=k)
$$

This implies that X and Y are equal in distribution.

Probability mass function

Let (Ω, \mathbb{P}) be a probability space. Let $X: \Omega \rightarrow E$ be a discrete random variable (recall that this means that E is countable). Then, for all $B \subset E$, we can write

$$
\begin{equation*}
\mathbb{P}(X \in B)=\sum_{x \in B} p_{X}(x) \tag{1}
\end{equation*}
$$

where $p_{X}(x):=\mathbb{P}(X=x), x \in E$. We call p_{X} the probability mass function (PMF) of X.
Properties. The PMF p_{X} of a discrete random variable X is

- non-negative $p_{X}(x) \geq 0$ for all $x \in E$;
- normalized $\sum_{x \in E} p_{X}(x)=1$.

In consequence, $0 \leq p_{X}(x) \leq 1$ for all $x \in E$.

- The law of a discrete random variable X with countable target space E is uniquely determined by its PMF. This is a consequence of the fact that, by (1),

$$
P_{X}(B):=\mathbb{P}(X \in B)=\sum_{x \in B} p_{X}(x)
$$

meaning that the PMF determines the law of X completely.

Probability density function

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a probability density function (PDF) if the following conditions hold:

- $f(x) \geq 0$ for all $x \in \mathbb{R}$;
- $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$.

A real-valued random variable X is said to be a continuous random variable if there exists a PDF $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$ such that, for all $a \leq b$, there holds

$$
\begin{equation*}
\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x \tag{2}
\end{equation*}
$$

Then we call f_{X} the probability density function (PDF) of X.
Equation (2) implies for any (measurable) subset $A \subset \mathbb{R}$ that

$$
P_{X}(A):=\mathbb{P}(X \in A)=\int_{A} f_{X}(x) \mathrm{d} x
$$

meaning that the PDF f_{X} determines the law of X completely.

Remark. One may think of the PDF as a "continuous" version of the PMF. However, the PMF and PDF are two quite different types of functions.

- The PMF of a discrete random variable X can take values between [0,1], i.e.,

$$
\mathbb{P}(X=x)=p_{X}(x) \in[0,1]
$$

- For a continuous random variable X, there always holds

$$
\mathbb{P}(X=x)=\int_{x}^{x} f_{X}(y) \mathrm{d} y=0
$$

Examples of discrete random variables

Example

Let $p \in(0,1)$. Let X be a random variable with values in $E=\{0,1\}$ and with PMF given by

$$
p_{X}(x)= \begin{cases}1-p & \text { if } x=0 \\ p & \text { if } x=1\end{cases}
$$

Then we say that X is a Bernoulli random variable with parameter p, and we write

$$
X \sim \operatorname{Ber}(p)
$$

A Bernoulli random variable with parameter p represents the result of throwing a coin that falls on Heads with probability p and Tails with probability $1-p(p=1 / 2$ is the coin is fair).

Example

Let $p \in(0,1)$ and $n \geq 1$ an integer. Let X be a random variable with values in $\{0, \ldots, n\}$ and with PMF given by

$$
p_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \quad x \in\{0, \ldots, n\} .
$$

Then we say that X is a binomial random variable with parameters n and p, and we write

$$
X \sim \operatorname{Bin}(n, p)
$$

This corresponds to the probability of the number of times a coin lands on Heads in n tosses of a coin, with p denoting the probability of a coin landing on Heads.

Example

Let $p \in(0,1)$. Let X be a random variable with values in \mathbb{N} and with PMF given by

$$
p_{X}(x)=(1-p)^{x-1} p, \quad x \geq 1
$$

Then we say that X is a geometric random variable with parameter p, and we write

$$
X \sim \operatorname{Geo}(p)
$$

This corresponds with the probability of hitting Heads for the first time, when the probability of hitting Heads is equal to p.

That is,

$$
\mathbb{P}(X=k)=p_{X}(k)=(1-p)^{k-1} p
$$

denotes the probability of hitting Tails for the first $k-1$ rounds and hitting heads on the $k^{\text {th }}$ round.

Example

Let $\lambda>0$. Let X be a random variable with values in \mathbb{N}_{0} and with PMF given by

$$
p_{X}(x)=\mathrm{e}^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x \geq 0
$$

We then say that X is a Poisson random variable with parameter λ, and we write

$$
X \sim \operatorname{Poisson}(\lambda)
$$

Poisson random variables can be used to model the count of rare events such as nuclei decaying in a radioactive sample.

Examples of continuous real-valued random variables

Definition

Let $a<b$. Let X be a real-valued continuous random variable with PDF

$$
f_{X}(x)=\left\{\begin{array}{ll}
\frac{1}{b-a} & \text { if } a<x<b, \\
0 & \text { otherwise },
\end{array} \quad x \in \mathbb{R}\right.
$$

We then say that X is a uniform random variable in $[a, b]$, and we write

$$
X \sim \mathcal{U}(a, b)
$$

Definition

Let $\lambda>0$. Let X be a real-valued continuous random variable with PDF

$$
f_{X}(x)=\left\{\begin{array}{ll}
\lambda \mathrm{e}^{-\lambda x} & \text { if } x \geq 0, \\
0 & \text { if } x<0,
\end{array} \quad x \in \mathbb{R}\right.
$$

We then say that X is an exponential random variable with parameter λ, and we write

$$
X \sim \operatorname{Exp}(\lambda)
$$

Example

Let $\mu \in \mathbb{R}$ and $\sigma>0$. Let X be a real-valued continuous random variable with PDF given by

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad x \in \mathbb{R}
$$

We then say that X is a Gaussian random variable with parameters μ and σ^{2}, and we write

$$
X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

The parameter μ is called the mean and σ is called the standard deviation of X.

Cumulative distribution function

The cumulative distribution function (CDF) of a real-valued random variable X is the function $F_{X}: \mathbb{R} \rightarrow[0,1]$ given by

$$
\left.F_{X}(x)=\mathbb{P}(\{\omega \in \Omega \mid X(\omega) \leq x\}) . \quad \text { (or shortly }=\mathbb{P}(X \leq x)\right)
$$

Note that the CDF is defined for any random variable taking values in \mathbb{R}, whether discrete or continuous.

Proposition

Let $F_{X}: \mathbb{R} \rightarrow[0,1]$ be the CDF of a real-valued random variable X. Then

- F_{X} is non-decreasing: if $a \leq b$, then $F_{X}(a) \leq F_{X}(b)$.
- F_{X} is right-continuous: for all $a \in \mathbb{R}$,

$$
F_{X}(a)=\lim _{x \rightarrow a+} F_{X}(x)
$$

- $F_{X}(-\infty):=\lim _{x \rightarrow-\infty} F_{X}(x)=0$ and $F_{X}(\infty):=\lim _{x \rightarrow \infty} F_{X}(x)=1$.

One can read off relevant information on the distribution of X from its CDF.

Lemma

Let $F_{X}: \mathbb{R} \rightarrow[0,1]$ be the CDF of a real-valued random variable X. Then

- For any real numbers $a<b$,

$$
\mathbb{P}(a<x \leq b)=F_{X}(b)-F_{X}(a)
$$

- For any $a \in \mathbb{R}$,

$$
\mathbb{P}(X>a)=1-F_{x}(a)
$$

- For any $x \in \mathbb{R}$,

$$
\mathbb{P}(X=x)=F_{X}(x)-\lim _{y \rightarrow x-} F_{X}(y)
$$

Remark. In particular, if X is a continuous random variable, we have $F_{X}(x)=\lim _{y \rightarrow x-} F_{X}(y)$ for all $x \in \mathbb{R}$; no jumps occur. For a discrete random variable, the situation is different: F_{X} is then a pure-jump function, meaning that it increases purely through jumps.

Relationship between the CDF and PMF (discrete case)

Proposition

Let X be a discrete random variable taking values in a countable subset E of \mathbb{R}. Denoting the PMF of X by p_{X} and its CDF by F_{X}, we have

$$
\begin{aligned}
& F_{X}(a)=\sum_{\substack{x \in E \\
x \leq a}} p_{X}(x) \quad \text { for all } a \in \mathbb{R} \\
& p_{X}(x)=F_{X}(x)-\lim _{y \rightarrow x-} F_{X}(y)
\end{aligned}
$$

Proof. By the definition of the PMF, there holds

$$
\mathbb{P}(X \in B)=\sum_{x \in B} p_{X}(x) \quad \text { for all subsets } B \subset E
$$

Setting $B=\{x \in E \mid x \leq a\}$ yields the first relation.

For the second relation, we note that

$$
\{X=x\}=\bigcap_{n \geq 1} E_{n}
$$

where the sets $E_{n}:=\left\{X \in\left(x-\frac{1}{n}, x\right]\right\}$ form a decreasing sequence of events $E_{n+1} \subset E_{n}$ for $n \geq 1$. In this case, there holds

$$
\begin{aligned}
\mathbb{P}\left(\bigcap_{n \geq 1} E_{n}\right) & =\lim _{n \rightarrow \infty} \mathbb{P}\left(E_{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(F_{X}(x)-F_{X}\left(x-\frac{1}{n}\right)\right) \\
& =F_{X}(x)-\lim _{y \rightarrow x-} F_{X}(y),
\end{aligned}
$$

as desired.

Relationship between the CDF and PDF (continuous case)

Proposition

Let X be a continuous real-valued random variable. Denoting the PDF of X by f_{X}, and its CDF by F_{X}, we have

$$
F_{X}(a)=\int_{-\infty}^{a} f_{X}(y) \mathrm{d} y \quad \text { for all } a \in \mathbb{R}
$$

In addition, if F_{X} is differentiable at $x \in E$, we have

$$
f_{X}(x)=F_{X}^{\prime}(x)
$$

Proof. For the first statement, note that for all $u<a$ there holds

$$
F_{X}(a)-F_{X}(u)=\mathbb{P}(X \in(u, a])=\mathbb{P}(X \in[u, a])=\int_{u}^{a} f_{X}(y) \mathrm{d} y
$$

where we used the fact that $\mathbb{P}(X=u)=0$ since X is a continuous random variable. Letting $u \rightarrow-\infty$ and recalling $F_{X}(-\infty)=0$, we obtain $F_{X}(a)=\int_{-\infty}^{a} f_{X}(y) \mathrm{d} y$. The second statement follows from the fundamental theorem of calculus (F_{X} is the antiderivative of f_{X}).

Proposition

The probability distribution of a real-valued random variable is uniquely determined by its CDF.

Proof. We give a proof in the discrete case. Let X and Y be two real-valued random variables with the same CDF:

$$
F_{X}(x)=F_{Y}(x) \quad \text { for all } x \in \mathbb{R}
$$

Then by the previous discussion,

$$
p_{X}(x)=F_{X}(x)-\lim _{y \rightarrow x-} F_{X}(y)=F_{Y}(x)-\lim _{y \rightarrow x-} F_{Y}(y)=p_{Y}(x)
$$

Thus X and Y have the same PMF, meaning that X and Y are equal in law.

Quantile function

Definition (Revised 30.10.2023)

Let X be a real-valued random variable with CDF F. The generalized inverse $F^{-1}:(0,1) \rightarrow \mathbb{R}$,

$$
\begin{equation*}
F^{-1}(q)=\inf \{x \in \mathbb{R} \mid F(x) \geq q\}, \quad q \in(0,1) \tag{3}
\end{equation*}
$$

is called the quantile function of X.

- If F is strictly increasing, then the quantile function is the inverse function of F.
- For example, the CDF and inverse CDF of a Bernoulli random variable $X \sim \operatorname{Ber}\left(\frac{1}{2}\right)$

$$
\text { are } \quad F(x)=\left\{\begin{array}{ll}
0 & \text { if } x<0 \\
\frac{1}{2} & \text { if } 0 \leq x<1 \\
1 & \text { if } x \geq 1
\end{array} \quad \text { and } \quad F^{-1}(q)= \begin{cases}0 & \text { if } 0<q \leq \frac{1}{2} \\
1 & \text { if } \frac{1}{2}<q<1 .\end{cases}\right.
$$

Remark. Another way to define the quantile function is $Q(q)=\inf \{x \in \mathbb{R} \mid F(x)>q\}$, $q \in(0,1)$. For the Bernoulli random variable $X \sim \operatorname{Ber}\left(\frac{1}{2}\right)$, we would have
$Q(q)=\left\{\begin{array}{ll}0 & \text { if } 0<q<\frac{1}{2} \\ 1 & \text { if } \frac{1}{2} \leq q<1\end{array}\right.$ (note the difference in the semiopen intervals).

"Find the smallest value of x such that $F(x) \geq q$."

Proposition

Let X be a real-valued random variable with CDF F_{X}. Then
(1) For all $q \in(0,1), F_{X}\left(F_{X}^{-1}(q)\right) \geq q$.
(2) If X is a continuous random variable, then $F_{X}\left(F_{X}^{-1}(q)\right)=q$ for all $q \in(0,1)$.

Proof. (1) Let $q \in(0,1)$. Since $F_{X}^{-1}(q)=\inf \{x \in \mathbb{R} \mid F(x) \geq q\}$ by definition, we can find a sequence $\left(a_{n}\right)_{n \geq 1}$ of real numbers such that $F_{X}\left(a_{n}\right) \geq q$ and $a_{n} \searrow F_{X}^{-1}(q)$. By the right-continuity of F_{X}, there holds

$$
F_{X}\left(F_{X}^{-1}(q)\right)=\lim _{n \rightarrow \infty} F_{X}\left(a_{n}\right) \geq q
$$

(2) It suffices to prove the inequality $F_{X}\left(F_{X}^{-1}(q)\right) \leq q$ by (1). Assume to the contrary that $F_{X}\left(F_{X}^{-1}(q)\right)>q$. Since F_{X} is the CDF of a continuous random variable, it is continuous. By continuity of F_{X}, there exists $a \in\left(-\infty, F_{X}^{-1}(q)\right)$ such that $F_{X}(a)>q$, which contradicts the definition of F_{X}^{-1}.

CDF of a normal random variable

Example

The CDF of a normal random variable $X \sim \mathcal{N}(0,1)$ is often denoted by Φ,

$$
\Phi(x)=\mathbb{P}(X \leq x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-\frac{t^{2}}{2}\right) \mathrm{d} t, \quad x \in \mathbb{R}
$$

Typical values to remember:

$$
\begin{aligned}
& \Phi(1.645)=\mathbb{P}(X \leq 1.645) \approx 0.95 \\
& \Phi(1.960)=\mathbb{P}(X \leq 1.960) \approx 0.975
\end{aligned}
$$

In this case the CDF Φ is injective and the quantile function, denoted by Φ^{-1}, coincides with its inverse. The above equalities can be recast as

$$
\begin{aligned}
& \Phi^{-1}(0.95) \approx 1.645 \\
& \Phi^{-1}(0.975) \approx 1.960
\end{aligned}
$$

