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Joint distributions
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Often, instead of dealing with one random variable only, we are interested
in several random variables X1, . . . ,Xn.

Let (Ω,P) be a probability space and let Xj : Ω → Ej be random variables
with target spaces Ej , j = 1, . . . , n. One can view the map

X := (X1, . . . ,Xn) : Ω 7→ E1 × · · · × En, ω 7→ (X1(ω), . . . ,Xn(ω))

as a single, multivariate random variable.

In analogy to the univariate case, the joint probability distribution of
X1, . . . ,Xn is

PX1,...,Xn(C ) = P((X1, . . . ,Xn) ∈ C ) for all C ⊂ E1 × · · · × En.

Informally speaking, the marginal distribution of Xi is obtained by
“integrating out” (continuous RVs) / “summation over” (discrete RVs) all
variables except the i th one. The precise definition is

PXi
(A) = PX1,...,Xn(E1 × · · · × Ei−1 × A× Ei+1 × · · · × En)

= P(X1 ∈ E1, . . . ,Xi−1 ∈ Ei−1,Xi ∈ A,Xi+1 ∈ Ei+1, . . . ,Xn ∈ En)

for all events A ⊂ Ei .
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Joint PMF (discrete RVs)

Assume that Xj : Ω → Ej are discrete random variables (recall that this
means each Ej is countable). This means that E1 × · · · × En is also
countable. The joint PMF pX1,...,Xn : E1 × · · · × En → [0, 1] is defined as

pX1,...,Xn(x1, . . . , xn) = P(X1 = x1, . . . ,Xn = xn), (x1, . . . , xn) ∈ E1×· · ·×En.

The probability distribution can be expressed as follows in the discrete
case.

Proposition

For all events C ⊂ E1 × · · · × En, there holds

PX1,...,Xn(C ) =
∑

(x1,...,xn)∈C

pX1,...,Xn(x1, . . . , xn).

Proof. The claim is an immediate consequence of σ-additivity of disjoint
events

{(X1, . . . ,Xn) ∈ C} =
⋃

(x1,...,xn)∈C

{X1 = x1, . . . ,Xn = xn}.
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The marginal PMF of a discrete RV Xi can be obtained from the joint
PMF by summation over all the other RVs:

pXi
(x) =

∑
x1∈E1,...,
xi−1∈Ei−1,
xi+1∈Ei+1,...

xn∈En

pX1,...,Xn(x1, . . . , xi−1, x , xi+1, . . . , xn).

More generally, for any subset of indices I ⊂ {1, . . . , n}, we can recover
the joint PMF of the random variables (Xi )i∈I from the joint PMF of
X1, . . . ,Xn by summing up pX1,...,Xn over all possible values in the
coordinates j ̸∈ I.

For example, if n = 4, we can recover the joint PMF of (X2,X3) via

pX2,X3(x , y) =
∑

x1∈E1, x4∈E4

pX1,X2,X3,X4(x1, x , y , x4).
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Example (Bivariate case n = 2)

If (X ,Y ) is a bivariate discrete RV with PMF pX ,Y , then the PMFs of X and Y are
respectively given by

pX (x) =
∑
y∈E2

pX ,Y (x , y) and pY (y) =
∑
x∈E1

pX ,Y (x , y).

Example

Let (X ,Y ) be a bivariate RV taking values in {1, 2} × {1, 2, 3} and with joint PMF p
given as below

p(x , y) y = 1 y = 2 y = 3

x = 1 0.1 0.3 0.2
x = 2 0.2 0.2 0

The values of the marginal PMF pX (x), x = 1, 2, are obtained by summing up the
probabilities in each of the corresponding rows

pX (1) = 0.1 + 0.3 + 0.2 = 0.6

pX (2) = 0.2 + 0.2 + 0 = 0.4.

Similarly, the values of the marginal PMF pY (y), y = 1, 2, 3, are obtained by summing
up the probabilities in each of the corresponding columns:

pY (1) = 0.1 + 0.2 = 0.3, pY (2) = 0.3 + 0.2 = 0.5, pY (3) = 0.2 + 0 = 0.2.
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Joint PDF (continuous RVs)

Definition

A function f : Rn → R is called a probability density function (PDF) if the
following conditions hold:

f (x1, . . . , xn) ≥ 0 for all (x1, . . . , xn) ∈ Rn;∫
R · · ·

∫
R f (x1, . . . , xn) dx1 · · · dxn = 1.

The real-valued random variables X1, . . . ,Xn admit a continuous joint
distribution (resp. admit a joint density) if there exists a PDF
fX1,...,Xn : Rn → R such that, for all subsets A ⊂ Rn, there holds

P((X1, . . . ,Xn) ∈ A) =

∫
A
fX1,...,Xn(x1, . . . , xn) dx1 · · · dxn.

Then we call fX1,...,Xn the probability density function (PDF) of X .
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Lemma

If X1, . . . ,Xn admit a joint density fX1,...,Xn , then X1, . . . ,Xn are
continuous RVs with PDF given by

fXi
(x)=

∫
Rn−1

fX1,...,Xn(x1, . . . , xi−1, x , xi+1, . . . , xn)dx1 · · · dxi−1dxi+1 · · · dxn

for x ∈ R. We call fXi
the marginal PDF of Xi .

More generally, for any subset of indices I ⊂ {1, . . . , n} we can recover
the joint PDF of the random variables (Xi )i∈I from the joint PDF of
X1, . . . ,Xn by integrating over all possible values in the coordinates j ̸∈ I.

For example, if n = 4, we can recover the joint PDF of (X2,X3) via

fX2,X3(x , y) =

∫ ∞

−∞

∫ ∞

−∞
fX1,X2,X3,X4(x1, x , y , x4) dx1 dx4.
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Example

Let a, b, c, d ∈ R be such that a < b and c < d . Then the function
f : R2 → R defined by

f (z) =
1

(b − a)(d − c)
1[a,b]×[c,d ](z), z ∈ R2,

is a PDF. It corresponds to the uniform distribution on the rectangle
[a, b]× [c , d ]. The marginal distributions are univariate distributions on
the [a, b] and [c , d ], respectively:

X ∼ U(a, b), Y ∼ U(c , d).
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Example (Bivariate Gaussian distribution)
Let µ ∈ R2 and let C ∈ R2×2 be a symmetric, positive definite 2× 2 matrix. The
function f : R2 → R given by

f (z) =
1

2π
√
detC

exp

(
− 1

2
(z − µ)TC−1(z − µ)

)
, z ∈ R2,

is a PDF. A random vector Z = (X ,Y ) with PDF p is said to have Gaussian distribution
with mean µ and covariance matrix C . Denoting

µ =

(
µX

µY

)
, C =

(
σ2
X σXY

σXY σ2
Y

)
,

then the marginal PDFs are given by

fX (x) =
1√
2πσ2

X

exp

(
− (x − µX )

2

2σ2
X

)
,

fY (y) =
1√
2πσ2

Y

exp

(
− (y − µY )

2

2σ2
Y

)
.

Thus X ∼ N (µX , σ
2
X ) and Y ∼ N (µY , σ

2
Y ).

In the special case µ = 0 and C = I2, i.e., µX = µY = 0, σXY = 0, and σ2
X = σ2

Y = 1:

f (z) =
1

2π
exp

(
− 1

2
∥z∥2

)
, z ∈ R2,

where ∥z∥ =
√

x2 + y 2 denotes the Euclidean norm of z = (x , y).
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Independence of random variables

Definition
The random variables X1, . . . ,Xn are said to be independent if, for any
subsets A1 ⊂ E1, . . . ,An ⊂ En, there holds

P(X1 ∈ A1, . . . ,Xn ∈ An) = P(X1 ∈ A1) · · ·P(Xn ∈ An).

Theorem (Independence of discrete RVs)
Assume that X1, . . . ,Xn are discrete random variables with joint PMF
pX1,...,Xn and marginal PMFs pX1 , . . . , pXn . Then X1, . . . ,Xn are
independent if and only if

pX1,...,Xn(x1, . . . , xn) = pX1(x1) · · · pXn(xn), (x1, . . . , xn) ∈ E1 × · · · × En.

Theorem (Independence of continuous RVs)
Assume that X1, . . . ,Xn are continuous random variables with joint PDF
fX1,...,Xn and marginal PDFs fX1 , . . . , fXn . Then X1, . . . ,Xn are independent
if and only if

fX1,...,Xn(x1, . . . , xn) = fX1(x1) · · · fXn(xn), (x1, . . . , xn) ∈ Rn.
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Example, independence

Let X and Y have the joint PDF

f (x , y) =

{
x + y if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.

Are the variables X and Y independent?

Now

f (x) =

∫ 1

0
(x + y)dy = x +

1

2
, 0 < x < 1

and

f (y) =

∫ 1

0
(x + y) dx = y +

1

2
, 0 < y < 1.

If the random variables are independent, then f (x , y) = f (x) · f (y). Let
x = 1/3 and y = 1/3. Now

f (x , y) = x + y = 1
3 + 1

3 = 2
3 ,

f (x) · f (y) = (x + 1
2)(y + 1

2) =
5
6 · 5

6 = 25
36 ̸= 2

3 .

Thus X and Y are not independent.
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Example, independence

Let X and Y have the joint PMF

p(x , y) =

{
1
4 if x ∈ {1, 2}, y ∈ {1, 2},
0 otherwise.

Now

p(x) =
∑

y∈{1,2}

p(x , y) = 1
4 + 1

4 = 1
2 , x ∈ {1, 2},

and otherwise p(x) = 0,

and

p(y) =
∑

x∈{1,2}

p(x , y) = 1
4 + 1

4 = 1
2 , y ∈ {1, 2},

and otherwise p(y) = 0.

Therefore p(x , y) = p(x)p(y) for all x and y , meaning that X and Y are
independent.
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Conditional distribution

Definition

Let (X ,Y ) be a discrete random variable in E1 × E2 with joint PMF pX ,Y

and marginal PMFs pX and pY . The conditional PMF pX |Y of X given Y
is defined by

pX |Y (x |y) =
pX ,Y (x , y)

pY (y)
,

for all x ∈ E1 and y ∈ E2 such that pY (y) > 0.

Definition

Let (X ,Y ) be a continuous random variable in Rn × Rk with joint PDF
fX ,Y and marginal PMFs fX and fY . The conditional PDF fX |Y of X given
Y is defined by

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)
,

for all x ∈ Rn and y ∈ Rk such that fY (y) > 0.

67



Transformations of random variables
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When we perform arithmetic with random variables, it is natural to ask

if X and Y are random variables, what is the distribution of
Z = X + Y ?

if X is an Rk -valued random variable with known distribution and
g : Rk → Rk is a function, what is the distribution of the transformed
random variable Y = g(X )?
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Theorem

Let X be a continuous real-valued random variable with CDF FX and
quantile function F−1

X .

1 The random variable U = FX (X ) ∼ U(0, 1).
2 If U ∼ U(0, 1), then F−1

X (U) has the same distribution as X (they are
equal in law).

Proof. (1) Note that P(FX (X ) ≤ t) = P(X ≤ F−1
X (t)).† We observe that

for all t ∈ (0, 1),

P(U ≤ t) = P(FX (X ) ≤ t) = P(X ≤ F−1
X (t)) = FX (F

−1
X (t)) = t.

Therefore P(U ≤ t) = t, meaning that U ∼ U(0, 1).

(2) P(F−1
X (U) ≤ t) = P(U ≤ FX (t)) = FX (t).

†If FX (X ) < t, then X < F−1
X (t), which implies (since X is a continuous RV) that

P(FX (X ) ≤ t) = P(FX (X ) < t) ≤ P(X < F−1
X (t)) = P(X ≤ F−1

X (t)).
On the other hand, X ≤ F−1

X (t) implies FX (X ) ≤ FX (F
−1
X (t)) = t, so

P(X ≤ F−1
X (t)) ≤ P(FX (X ) ≤ t). Therefore P(FX (X ) ≤ t) = P(X ≤ F−1

X (t)).
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The previous theorem is very useful for simulations: if we have a uniform
random number generator, we can generate samples from any distribution
provided that we have access to its quantile function.

Algorithm (Inverse transform sampling)

1. Draw U ∼ U(0, 1).
2. Calculate X = F−1

X (U).

If a closed form expression for the inverse CDF is not available, then a
computationally attractive formula for approximating the value F−1

X (U) is
given by the generalized inverse:

F−1
X (q) = inf{x ∈ R | FX (x) ≥ q}.
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Example (Exponential distribution)

Let X ∼ Exp(λ), λ > 0, with the PDF fX (x) = λe−λx1[0,∞)(x). In this

case, FX (a) = 1[0,∞)(a)(1− e−λa) and F−1
X (q) = − 1

λ log(1− q), q ∈ (0, 1).
We implement inverse transform sampling to draw a sample X ∼ Exp(1).

import numpy as np

import matplotlib.pyplot as plt

n = int(1e5) # sample size

x = np.linspace(0,12,1000)

lam = 1 # lambda parameter of Exp distribution

p = lambda x: lam * np.exp(-lam*x) # PDF

invF = lambda q: -1/lam * np.log(1-q) # quantile function

u = np.random.uniform(size=n) # i.i.d. sample from U(0,1)

sample = invF(u) # inverse transform

plt.hist(sample,bins=’auto’,

density=True,label=’sample’) # draw histogram

plt.plot(x,p(x),linewidth=2,label=’PDF’) # plot the PDF

plt.legend()

plt.show()
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Example

Let the random variable X have the PDF fX (x) = (6x − 6x2)1[0,1](x). In
this case, the quantile function is difficult to write down, but we can still
implement inverse transform sampling numerically.

import numpy as np

import matplotlib.pyplot as plt

n = int(1e6) # sample size

x = np.linspace(0,1,10000)

p = lambda x: 6*x-6*x**2 # PDF

P = np.cumsum(p(x)); P = P/P[-1] # "empirical" CDF of p

sample = []

for _ in range(n):

u = np.random.uniform() # realization of U(0,1)

ind = np.where(u<=P)[0][0] # inverse transform

sample.append(x[ind]) # store sample

plt.hist(sample,bins=’auto’,

density=True,label=’sample’) # draw histogram

plt.plot(x,p(x),linewidth=2,label=’PDF’) # plot the PDF

plt.legend(); plt.show() 74
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Change of variables formula (discrete RVs)

Proposition

Let X : Ω → E and Y : Ω → F be discrete random variables such that
Y = g(X ), where g : E → F . Then the PMF of Y is given by

pY (y) =
∑

x∈g−1({y})

pX (x) =
∑
x∈E

g(x)=y

pX (x).

In other words, the PMF of Y at point y is obtained by summing up the
PMF of X over the preimage g−1({y}).

Proof. Recall that g−1({y}) = {x ∈ E | g(x) = y}. Thus

pY (y) = P(Y = y) = P(g(X ) = y) = P(X = g−1({y}))

= P
( ⋃

x∈g−1({y})

{X = x}
)

=
∑

x∈g−1({y})

P(X = x) =
∑

x∈g−1({y})

pX (x),

where we used the σ-additivity of the disjoint sets ({X = x})x∈g−1(y).
76



Change of variables formula (continuous, univariate case)

Let X and Y be real-valued random variables such that Y = g(X ), where
g : R → R. By noting that the CDF of Y satisfies

FY (y) = P(Y ≤ y) = P(g(X ) ≤ y),

one can use the following method to obtain the PDF of Y given the PDF
of X :

Compute the CDF of Y using

FY (y) = P(g(X ) ≤ y) for y ∈ R.

If FY is differentiable, then Y has the PDF fY = F ′
Y .
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Example

Let X ∼ U(0, 1), g(x) = x2, and define Y = g(X ). We wish to find fY (y).
We begin by noting that

FY (y) = P(g(X ) ≤ y) = P(X 2 ≤ y) =

{
P(∅) if y < 0,

P(−√
y ≤ X ≤ √

y) if y ≥ 0.

Here, P(∅) = 0 and

P(−√
y ≤ X ≤ √

y) =

∫ √
y

−√
y
1[0,1](x)dx =

{√
y if y ∈ [0, 1],

1 if y > 1.

Hence

FY (y) =


0 if y < 0
√
y if y ∈ [0, 1],

1 if y > 1

d
dy

⇒ fY (y) =
1[0,1](y)

2
√
y

, y ∈ R.
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In the special case where g : R → R is a strictly monotonic, continuously
differentiable function, one has the following formula.

Theorem

Let g : R → R be a continuously differentiable and strictly monotonic
function. Let X and Y be continuous, real-valued random variables
satisfying Y = g(X ). Then we have the following:

fX (x) = fY (g(x))|g ′(x)|, x ∈ R,

and

fY (y) = fX (g
−1(y))|(g−1)′(y)| = fX (g

−1(y))
1

|g ′(g−1(y))|
, y ∈ R.

Proof. For each (measurable) subset B ⊂ R, there holds

P(X ∈ B) = P(Y ∈ g(B)) =

∫
g(B)

fY (y)dy =

∫
B
fY (g(x))|g ′(x)|dx .

Since B is arbitrary, we conclude that fX (x) = fY (g(x))|g ′(x)|.
The second claim follows from the first one by writing X = g−1(Y ).
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Change of variables formula (continuous, multivariate case)

The change of variables formulae can be generalized to higher dimensions.
For example, let X1, . . . ,Xk be real-valued random variables and let
g : Rk → R. We wish to derive the PDF of the real-valued random
variable Z = g(X1, . . . ,Xk).

One can proceed as follows:

1 Compute the CDF FZ of Z by

FZ (z) = P(g(X1, . . . ,Xk) ≤ z).

2 If FZ is differentiable, then its PDF is given by fZ = F ′
Z .
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Example

Let X ,Y ∼ U(0, 1) be independent random variables and define
Z = max(X ,Y ). Now†

FZ (z) = P(max(X ,Y ) ≤ z) = P(X ≤ z ,Y ≤ z).

Since X and Y were assumed to be independent, and both X and Y are
uniformly distributed in [0, 1], we get

FZ (z) = P(X ≤ z)P(Y ≤ z) =

(∫ z

−∞
1[0,1](t)dt

)2

=


0 if z < 0,

z2 if z ∈ [0, 1],

1 if z > 1.

Differentiating the above yields

fZ (z) = 2z 1[0,1](z), z ∈ R.

†Note that max(X ,Y ) ≤ z ⇔ X ≤ z and Y ≤ z . Recall also the notation
P(X ≤ z ,Y ≤ z) = P(X ≤ z and Y ≤ z).
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The following change of variable formula works in the case where X ,Y are
Rn-valued random variables and g : Rn → Rn is C 1-diffeomorphism (i.e., g
is a bijection and both g and its inverse g−1 are continuously
differentiable). The Jacobian matrix of a vector field
F (x) = [F1(x), . . . ,Fn(x)]

T, where Fj : Rn → R for j = 1, . . . , n, is

DF (x) =


∂
∂x1

F1(x) · · · ∂
∂xn

F1(x)
...

. . .
...

∂
∂x1

Fn(x) · · · ∂
∂xn

Fn(x)

 .

Theorem

Let g : Rn → Rn be a C 1-diffeomorphism and let X and Y be Rn-valued
random variables such that Y = g(X ). Then

fX (x) = fY (g(x))| detDg(x)|, x ∈ Rn,

and
fY (y) = fX (g

−1(y))| detDg−1(y)|, y ∈ Rn.

Proof. The argument is exactly the same as the univariate version (use the
multivariate change of variables formula for integration).
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Example

Assume that g is an affine transformation

g(x) = Ax + b, x ∈ Rn,

for some fixed vector b ∈ Rn and invertible matrix A ∈ Rn×n. Suppose
that X has the PDF fX and Y = g(X ). We wish to find the PDF fY of Y .

The Jacobian matrix of g is given by

Dg(x) = A, x ∈ Rn,

and we have
g−1(y) = A−1(y − b).

Therefore the change of variables formula yields

fY (y) = fX (A
−1(y − b))| detA−1| = fX (A

−1(y − b))
1

| detA|
, y ∈ Rn.
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Sums of independent random variables

Theorem
Let X and Y be independent, real-valued discrete random variables with
PMFs pX and pY , respectively. Then the random variable Z = X + Y has
the PMF

pZ (z) =
∑
x∈E

pX (x)pY (z − x).

Example

Let X ∼ Poisson(λ) and Y ∼ Poisson(µ) be two independent Poisson ran-
dom variables with parameters λ, µ > 0. Then X + Y ∼ Poisson(λ+ µ).

Theorem
Let X and Y be independent, real-valued continuous random variables
with PDFs fX and fY , respectively. Then the random variable Z = X + Y
has the PDF

fZ (z) =

∫ ∞

−∞
fX (x)fY (z − x) dx , z ∈ R.

This is the convolution of fX and fY and denoted fZ (z) = (fX ∗ fY )(z).
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Positive definite matrices

Definition

Let A ∈ Rd×d be a symmetric matrix. We call A a positive definite matrix
if

xTAx > 0 for all x ∈ Rd \ {0}.

This implies that A is invertible and that A−1 is positive definite if A is.

Characterization

Let A ∈ Rd×d be a symmetric matrix. Then the following are equivalent:

The matrix A is positive definite.
The eigenvalues of A are positive.
The matrix A has a Cholesky decomposition: there exists an upper
triangular matrix R ∈ Rd×d such that

A = RTR.

The matrix A has a matrix square root, denoted by A1/2, which
satisfies

A = A1/2A1/2.

Note that the matrix square root A1/2 is also positive definite.
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Multivariate Gaussian random variables

Definition

Let µ ∈ Rd and let C ∈ Rd×d be a positive definite matrix. We call a
random variable X on Rd a multivariate Gaussian random variable with
mean µ and covariance C if it has the PDF

fX (x) =

(
1

(2π)d detC

)1/2

exp

(
− 1

2
(x − µ)TC−1(x − µ)

)
, x ∈ Rd .

In this case, we denote X ∼ N (µ,C ).

Remark. There exists a concept of Gaussian random variable even in the
case where the matrix C is positive semi-definite, i.e., at least one of its
eigenvalues is 0, but such a random variable does not have a well-defined
PDF (it is a “degenerate” random variable). The definition uses the
so-called characteristic function. We omit the details.

The inverse of the covariance matrix is sometimes called a precision
matrix. An often used notation is ∥x∥C =

√
xTC−1x for x ∈ Rd .
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Transformations of Gaussian random variables

Gaussian random variables behave predictably under affine
transformations:

Multiplying a Gaussian RV yields another Gaussian RV with an
updated variance, but the same mean.

Translating a Gaussian RV yields another Gaussian RV with an
updated mean, but the same variance.

An affine transformation of a Gaussian RV yields another Gaussian
RVs with an updated mean and variance.

Nonlinear transformations of Gaussian RVs are typically no longer
Gaussian RVs!

– For example, the Euclidean norm Y = ∥X∥ of a Gaussian RV is not
Gaussian (it follows a so-called “folded normal distribution”).

– The sum of squares of independent Gaussian RVs Z = X 2
1 + · · ·+ X 2

k ,
where Xi are assumed to be independent Gaussian RVs, has the χ2(k)
distribution.
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Proposition (ZCA transform, univariate version)
Let µ ∈ R and σ > 0. The univariate Gaussian distribution satisfies the
following properties:

1 If X ∼ N (0, 1), then Y := µ+ σX ∼ N (µ, σ2).

2 If Y ∼ N (µ, σ2), then X := 1
σ (Y − µ) ∼ N (0, 1).

Proposition (ZCA transform, multivariate version)

Let µ ∈ Rd and let C ∈ Rd×d be a symmetric positive definite covariance
matrix. The multivariate Gaussian distribution satisfies the following
properties:

1 If X ∼ N (0, Id), then Y := µ+ C 1/2X ∼ N (µ,C ).

2 If Y ∼ N (µ,C ), then X := C−1/2(Y − µ) ∼ N (0, Id).

(Here, C−1/2 := (C 1/2)−1 is the inverse of the matrix square root of C .)

Remark. (1) is called a Mahalanobis or ZCA† coloring transform: it turns
a standard Gaussian RV into a Gaussian RV with specified mean and
covariance. (2) is called a Mahalanobis or ZCA† whitening transform: it
turns a Gaussian RV with a specified mean and covariance into a standard
Gaussian RV.

†Zero-phase component analysis 88



.Proof. Let us prove claim (1) of the multivariate version. Let X ∼ N (0, Id)
and define Y = µ+ C 1/2x . By defining g(x) = µ+ C 1/2x , we can write

Y = g(X ) ⇒ fY (y) = fX (g
−1(y))| detDg−1(y)|.

In this case, we have

g−1(y) = C−1/2(y − µ) and | detDg−1(y)| = | detC−1/2| = 1√
detC

.

Therefore

fY (y) =
1

(2π)d/2
exp

(
− 1

2
∥C−1/2(y − µ)∥2

)
1√
detC

=

(
1

(2π)d detC

)1/2

exp

(
− 1

2
(x − µ)TC−1(x − µ)

)
,

which implies that Y ∼ N (µ,C ).

The proof for (2) follows by writing X = g−1(Y ) and using the change of
variables formula fX (x) = fY (g(x))| detDg(x)|.
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Different coloring transforms

Let µ ∈ Rd , let C ∈ Rd×d be a symmetric positive covariance matrix, and
let X ∼ N (0, Id).

The Mahalanobis or ZCA coloring transform uses the matrix square
root factorization C = C 1/2C 1/2 to write a standard Gaussian RV as

Y = µ+ C 1/2X ∼ N (µ,C ).

One could alternatively use the Cholesky decomposition C = RTR to
obtain the Cholesky coloring transform

Y = µ+ RTX ∼ N (µ,C ).

Finally, one could use the eigendecomposition
C = UΛUT = (UΛ1/2)(UΛ1/2)T, where UUT = I = UTU and Λ is a
diagonal matrix containing the eigenvalues of C , to obtain the PCA†

coloring transform

Y = µ+ UΛ1/2X ∼ N (µ,C ).

†Principal component analysis
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Different whitening transforms

Let µ ∈ Rd , let C ∈ Rd×d be a symmetric positive covariance matrix, and
let Y ∼ N (µ,C ).

The Mahalanobis or ZCA whitening transform uses the matrix square
root factorization C = C 1/2C 1/2 to write a standard Gaussian RV as

X = C−1/2(Y − µ) ∼ N (0, Id).

One could alternatively use the Cholesky decomposition C = RTR to
obtain the Cholesky whitening transform

X = R−T(Y − µ) ∼ N (0, Id).

Finally, one could use the eigendecomposition
C = UΛUT = (UΛ1/2)(UΛ1/2)T, where UUT = I = UTU and Λ is a
diagonal matrix containing the eigenvalues of C , to obtain the PCA
whitening transform

X = Λ−1/2UT(Y − µ) ∼ N (0, Id).

Note: the three RVs obtained using different whitening transforms are
rotations of one another.
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By inductive reasoning, one can deduce that any finite linear combination
of Gaussian RVs is a Gaussian RV.

Proposition (Univariate version)

Let Xj ∼ N (µi , σ
2
i ) be independent Gaussian random variables with

µi ∈ R and σi > 0 for i = 1, . . . , n. Then

X :=
n∑

i=1

Xi ∼ N
( n∑

i=1

µi ,

n∑
i=1

σ2
i

)
.

Proposition (Multivariate version)

Let Xj ∼ N (µi ,Ci ) be independent Gaussian random variables with
µi ∈ Rd and symmetric, positive definite Ci ∈ Rd×d for i = 1, . . . , n. Then

X :=
n∑

i=1

Xi ∼ N
( n∑

i=1

µi ,
n∑

i=1

Ci

)
.
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Proposition

Let µ ∈ Rd and let C ∈ Rd×d be a symmetric, positive definite matrix.
Let X ∼ N (µ,C ). If k ≤ d and L ∈ Rk×d is a matrix with full rank, then

Y = LX ∼ N (Lµ, LCLT).

Proof. Omitted.
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