Statistics for Data Science

Wintersemester 2023/24

Vesa Kaarnioja
vesa.kaarnioja@fu-berlin.de

FU Berlin, FB Mathematik und Informatik
Third lecture, October 30, 2023

Joint distributions

Often, instead of dealing with one random variable only, we are interested in several random variables X_{1}, \ldots, X_{n}.

Let (Ω, \mathbb{P}) be a probability space and let $X_{j}: \Omega \rightarrow E_{j}$ be random variables with target spaces $E_{j}, j=1, \ldots, n$. One can view the map

$$
X:=\left(X_{1}, \ldots, X_{n}\right): \Omega \mapsto E_{1} \times \cdots \times E_{n}, \quad \omega \mapsto\left(X_{1}(\omega), \ldots, X_{n}(\omega)\right)
$$

as a single, multivariate random variable.
In analogy to the univariate case, the joint probability distribution of X_{1}, \ldots, X_{n} is

$$
P_{X_{1}, \ldots, X_{n}}(C)=\mathbb{P}\left(\left(X_{1}, \ldots, X_{n}\right) \in C\right) \quad \text { for all } C \subset E_{1} \times \cdots \times E_{n}
$$

Informally speaking, the marginal distribution of X_{i} is obtained by "integrating out" (continuous RVs) / "summation over" (discrete RVs) all variables except the $i^{\text {th }}$ one. The precise definition is

$$
\begin{aligned}
P_{X_{i}}(A) & =P_{X_{1}, \ldots, X_{n}}\left(E_{1} \times \cdots \times E_{i-1} \times A \times E_{i+1} \times \cdots \times E_{n}\right) \\
& =\mathbb{P}\left(X_{1} \in E_{1}, \ldots, X_{i-1} \in E_{i-1}, X_{i} \in A, X_{i+1} \in E_{i+1}, \ldots, X_{n} \in E_{n}\right)
\end{aligned}
$$

for all events $A \subset E_{i}$.

Joint PMF (discrete RVs)

Assume that $X_{j}: \Omega \rightarrow E_{j}$ are discrete random variables (recall that this means each E_{j} is countable). This means that $E_{1} \times \cdots \times E_{n}$ is also countable. The joint PMF $p_{X_{1}, \ldots, X_{n}}: E_{1} \times \cdots \times E_{n} \rightarrow[0,1]$ is defined as $p_{X_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{n}\right)=\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right), \quad\left(x_{1}, \ldots, x_{n}\right) \in E_{1} \times \cdots \times E_{n}$.
The probability distribution can be expressed as follows in the discrete case.

Proposition
For all events $C \subset E_{1} \times \cdots \times E_{n}$, there holds

$$
P_{X_{1}, \ldots, X_{n}}(C)=\sum_{\left(x_{1}, \ldots, x_{n}\right) \in C} p_{X_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{n}\right) .
$$

Proof. The claim is an immediate consequence of σ-additivity of disjoint events

$$
\left\{\left(X_{1}, \ldots, X_{n}\right) \in C\right\}=\bigcup_{\left(x_{1}, \ldots, x_{n}\right) \in C}\left\{X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right\}
$$

The marginal PMF of a discrete RV X_{i} can be obtained from the joint PMF by summation over all the other RVs:

$$
p_{X_{i}}(x)=\sum_{\substack{x_{1} \in E_{1}, \ldots, x_{i} \in E_{i-1}, x_{i+1} \in E_{i+1}, \ldots}} p_{X_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_{n}\right) .
$$

More generally, for any subset of indices $\mathcal{I} \subset\{1, \ldots, n\}$, we can recover the joint PMF of the random variables $\left(X_{i}\right)_{i \in \mathcal{I}}$ from the joint PMF of X_{1}, \ldots, X_{n} by summing up $p_{X_{1}, \ldots, X_{n}}$ over all possible values in the coordinates $j \notin \mathcal{I}$.

For example, if $n=4$, we can recover the joint PMF of $\left(X_{2}, X_{3}\right)$ via

$$
p_{X_{2}, X_{3}}(x, y)=\sum_{x_{1} \in E_{1}, x_{4} \in E_{4}} p_{X_{1}, X_{2}, X_{3}, X_{4}}\left(x_{1}, x, y, x_{4}\right) .
$$

Example (Bivariate case $n=2$)
If (X, Y) is a bivariate discrete RV with PMF $p_{X, Y}$, then the PMFs of X and Y are respectively given by

$$
p_{X}(x)=\sum_{y \in E_{2}} p_{X, Y}(x, y) \quad \text { and } \quad p_{Y}(y)=\sum_{x \in E_{1}} p_{X, Y}(x, y)
$$

Example

Let (X, Y) be a bivariate RV taking values in $\{1,2\} \times\{1,2,3\}$ and with joint PMF p given as below

$$
\begin{array}{c|ccc}
p(x, y) & y=1 & y=2 & y=3 \\
\hline x=1 & 0.1 & 0.3 & 0.2 \\
x=2 & 0.2 & 0.2 & 0
\end{array}
$$

The values of the marginal PMF $p_{X}(x), x=1,2$, are obtained by summing up the probabilities in each of the corresponding rows

$$
\begin{aligned}
& p_{X}(1)=0.1+0.3+0.2=0.6 \\
& p_{X}(2)=0.2+0.2+0=0.4
\end{aligned}
$$

Similarly, the values of the marginal PMF $p_{Y}(y), y=1,2,3$, are obtained by summing up the probabilities in each of the corresponding columns:

$$
p_{Y}(1)=0.1+0.2=0.3, \quad p_{Y}(2)=0.3+0.2=0.5, \quad p_{Y}(3)=0.2+0=0.2
$$

Joint PDF (continuous RVs)

Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called a probability density function (PDF) if the following conditions hold:

- $f\left(x_{1}, \ldots, x_{n}\right) \geq 0$ for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$;
- $\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}=1$.

The real-valued random variables X_{1}, \ldots, X_{n} admit a continuous joint distribution (resp. admit a joint density) if there exists a PDF $f_{X_{1}, \ldots, X_{n}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that, for all subsets $A \subset \mathbb{R}^{n}$, there holds

$$
\mathbb{P}\left(\left(X_{1}, \ldots, X_{n}\right) \in A\right)=\int_{A} f_{X_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}
$$

Then we call $f_{X_{1}, \ldots, X_{n}}$ the probability density function (PDF) of X.

Lemma

If X_{1}, \ldots, X_{n} admit a joint density $f_{X_{1}, \ldots, X_{n}}$, then X_{1}, \ldots, X_{n} are continuous $R V$ s with PDF given by
$f_{X_{i}}(x)=\int_{\mathbb{R}^{n-1}} f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{i-1} \mathrm{~d} x_{i+1} \cdots \mathrm{~d} x_{n}$ for $x \in \mathbb{R}$. We call $f_{X_{i}}$ the marginal PDF of X_{i}.

More generally, for any subset of indices $\mathcal{I} \subset\{1, \ldots, n\}$ we can recover the joint PDF of the random variables $\left(X_{i}\right)_{i \in \mathcal{I}}$ from the joint PDF of X_{1}, \ldots, X_{n} by integrating over all possible values in the coordinates $j \notin \mathcal{I}$.

For example, if $n=4$, we can recover the joint PDF of $\left(X_{2}, X_{3}\right)$ via

$$
f_{X_{2}, X_{3}}(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_{1}, X_{2}, X_{3}, X_{4}}\left(x_{1}, x, y, x_{4}\right) \mathrm{d} x_{1} \mathrm{~d} x_{4}
$$

Example

Let $a, b, c, d \in \mathbb{R}$ be such that $a<b$ and $c<d$. Then the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(z)=\frac{1}{(b-a)(d-c)} \mathbf{1}_{[a, b] \times[c, d]}(z), \quad z \in \mathbb{R}^{2},
$$

is a PDF. It corresponds to the uniform distribution on the rectangle $[a, b] \times[c, d]$. The marginal distributions are univariate distributions on the $[a, b]$ and $[c, d]$, respectively:

$$
X \sim \mathcal{U}(a, b), \quad Y \sim \mathcal{U}(c, d)
$$

Example (Bivariate Gaussian distribution)
Let $\mu \in \mathbb{R}^{2}$ and let $C \in \mathbb{R}^{2 \times 2}$ be a symmetric, positive definite 2×2 matrix. The function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(z)=\frac{1}{2 \pi \sqrt{\operatorname{det} C}} \exp \left(-\frac{1}{2}(z-\mu)^{\mathrm{T}} C^{-1}(z-\mu)\right), \quad z \in \mathbb{R}^{2}
$$

is a PDF. A random vector $Z=(X, Y)$ with PDF p is said to have Gaussian distribution with mean μ and covariance matrix C. Denoting

$$
\mu=\binom{\mu_{X}}{\mu_{Y}}, \quad C=\left(\begin{array}{cc}
\sigma_{X}^{2} & \sigma_{X Y} \\
\sigma_{X Y} & \sigma_{Y}^{2}
\end{array}\right)
$$

then the marginal PDFs are given by

$$
\begin{aligned}
& f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} \exp \left(-\frac{\left(x-\mu_{X}\right)^{2}}{2 \sigma_{X}^{2}}\right) \\
& f_{Y}(y)=\frac{1}{\sqrt{2 \pi \sigma_{Y}^{2}}} \exp \left(-\frac{\left(y-\mu_{Y}\right)^{2}}{2 \sigma_{Y}^{2}}\right)
\end{aligned}
$$

Thus $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$.
In the special case $\mu=0$ and $C=I_{2}$, i.e., $\mu_{X}=\mu_{Y}=0, \sigma_{X Y}=0$, and $\sigma_{X}^{2}=\sigma_{Y}^{2}=1$:

$$
f(z)=\frac{1}{2 \pi} \exp \left(-\frac{1}{2}\|z\|^{2}\right), \quad z \in \mathbb{R}^{2}
$$

where $\|z\|=\sqrt{x^{2}+y^{2}}$ denotes the Euclidean norm of $z=(x, y)$.

Independence of random variables

Definition

The random variables X_{1}, \ldots, X_{n} are said to be independent if, for any subsets $A_{1} \subset E_{1}, \ldots, A_{n} \subset E_{n}$, there holds

$$
\mathbb{P}\left(X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right)=\mathbb{P}\left(X_{1} \in A_{1}\right) \cdots \mathbb{P}\left(X_{n} \in A_{n}\right)
$$

Theorem (Independence of discrete RVs)
Assume that X_{1}, \ldots, X_{n} are discrete random variables with joint PMF $p_{X_{1}, \ldots, X_{n}}$ and marginal PMFs $p_{X_{1}}, \ldots, p_{X_{n}}$. Then X_{1}, \ldots, X_{n} are independent if and only if

$$
p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=p_{X_{1}}\left(x_{1}\right) \cdots p_{X_{n}}\left(x_{n}\right), \quad\left(x_{1}, \ldots, x_{n}\right) \in E_{1} \times \cdots \times E_{n} .
$$

Theorem (Independence of continuous RVs) Assume that X_{1}, \ldots, X_{n} are continuous random variables with joint PDF $f_{X_{1}, \ldots, X_{n}}$ and marginal PDFs $f_{X_{1}}, \ldots, f_{X_{n}}$. Then X_{1}, \ldots, X_{n} are independent if and only if

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right), \quad\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

Example, independence

Let X and Y have the joint PDF

$$
f(x, y)= \begin{cases}x+y & \text { if } 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Are the variables X and Y independent?
Now

$$
f(x)=\int_{0}^{1}(x+y) \mathrm{d} y=x+\frac{1}{2}, 0<x<1
$$

and

$$
f(y)=\int_{0}^{1}(x+y) \mathrm{d} x=y+\frac{1}{2}, 0<y<1
$$

If the random variables are independent, then $f(x, y)=f(x) \cdot f(y)$. Let $x=1 / 3$ and $y=1 / 3$. Now

$$
\begin{aligned}
& f(x, y)=x+y=\frac{1}{3}+\frac{1}{3}=\frac{2}{3} \\
& f(x) \cdot f(y)=\left(x+\frac{1}{2}\right)\left(y+\frac{1}{2}\right)=\frac{5}{6} \cdot \frac{5}{6}=\frac{25}{36} \neq \frac{2}{3} .
\end{aligned}
$$

Thus X and Y are not independent.

Example, independence

Let X and Y have the joint PMF

$$
p(x, y)= \begin{cases}\frac{1}{4} & \text { if } x \in\{1,2\}, y \in\{1,2\} \\ 0 & \text { otherwise }\end{cases}
$$

Now

$$
p(x)=\sum_{y \in\{1,2\}} p(x, y)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}, x \in\{1,2\},
$$

and otherwise $p(x)=0$,
and

$$
p(y)=\sum_{x \in\{1,2\}} p(x, y)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}, y \in\{1,2\}
$$

and otherwise $p(y)=0$.

Therefore $p(x, y)=p(x) p(y)$ for all x and y, meaning that X and Y are independent.

Conditional distribution

Definition

Let (X, Y) be a discrete random variable in $E_{1} \times E_{2}$ with joint PMF $p_{X, Y}$ and marginal PMFs p_{X} and p_{Y}. The conditional PMF $p_{X \mid Y}$ of X given Y is defined by

$$
p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}
$$

for all $x \in E_{1}$ and $y \in E_{2}$ such that $p_{Y}(y)>0$.

Definition

Let (X, Y) be a continuous random variable in $\mathbb{R}^{n} \times \mathbb{R}^{k}$ with joint PDF $f_{X, Y}$ and marginal PMFs f_{X} and f_{Y}. The conditional PDF $f_{X \mid Y}$ of X given Y is defined by

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

for all $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{k}$ such that $f_{Y}(y)>0$.

Transformations of random variables

When we perform arithmetic with random variables, it is natural to ask

- if X and Y are random variables, what is the distribution of $Z=X+Y$?
- if X is an \mathbb{R}^{k}-valued random variable with known distribution and $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is a function, what is the distribution of the transformed random variable $Y=g(X)$?

Theorem

Let X be a continuous real-valued random variable with CDF F_{X} and quantile function F_{X}^{-1}.
(1) The random variable $U=F_{X}(X) \sim \mathcal{U}(0,1)$.
(2) If $U \sim \mathcal{U}(0,1)$, then $F_{X}^{-1}(U)$ has the same distribution as X (they are equal in law).

Proof. (1) Note that $\mathbb{P}\left(F_{X}(X) \leq t\right)=\mathbb{P}\left(X \leq F_{X}^{-1}(t)\right) .{ }^{\dagger}$ We observe that for all $t \in(0,1)$,

$$
\mathbb{P}(U \leq t)=\mathbb{P}\left(F_{X}(X) \leq t\right)=\mathbb{P}\left(X \leq F_{X}^{-1}(t)\right)=F_{X}\left(F_{X}^{-1}(t)\right)=t
$$

Therefore $\mathbb{P}(U \leq t)=t$, meaning that $U \sim \mathcal{U}(0,1)$.
(2) $\mathbb{P}\left(F_{X}^{-1}(U) \leq t\right)=\mathbb{P}\left(U \leq F_{X}(t)\right)=F_{X}(t)$.
${ }^{\dagger}$ If $F_{X}(X)<t$, then $X<F_{X}^{-1}(t)$, which implies (since X is a continuous RV) that $\mathbb{P}\left(F_{X}(X) \leq t\right)=\mathbb{P}\left(F_{X}(X)<t\right) \leq \mathbb{P}\left(X<F_{X}^{-1}(t)\right)=\mathbb{P}\left(X \leq F_{X}^{-1}(t)\right)$. On the other hand, $X \leq F_{X}^{-1}(t)$ implies $F_{X}(X) \leq F_{X}\left(F_{X}^{-1}(t)\right)=t$, so $\mathbb{P}\left(X \leq F_{X}^{-1}(t)\right) \leq \mathbb{P}\left(F_{X}(X) \leq t\right)$. Therefore $\mathbb{P}\left(F_{X}(X) \leq t\right)=\mathbb{P}\left(X \leq F_{X}^{-1}(t)\right)$.

The previous theorem is very useful for simulations: if we have a uniform random number generator, we can generate samples from any distribution provided that we have access to its quantile function.

Algorithm (Inverse transform sampling)

1. $\operatorname{Draw} U \sim \mathcal{U}(0,1)$.
2. Calculate $X=F_{X}^{-1}(U)$.

If a closed form expression for the inverse CDF is not available, then a computationally attractive formula for approximating the value $F_{X}^{-1}(U)$ is given by the generalized inverse:

$$
F_{X}^{-1}(q)=\inf \left\{x \in \mathbb{R} \mid F_{X}(x) \geq q\right\}
$$

Example (Exponential distribution)

Let $X \sim \operatorname{Exp}(\lambda), \lambda>0$, with the PDF $f_{X}(x)=\lambda \mathrm{e}^{-\lambda x} \mathbf{1}_{[0, \infty)}(x)$. In this case, $F_{X}(a)=\mathbf{1}_{[0, \infty)}(a)\left(1-\mathrm{e}^{-\lambda a}\right)$ and $F_{X}^{-1}(q)=-\frac{1}{\lambda} \log (1-q), q \in(0,1)$ We implement inverse transform sampling to draw a sample $X \sim \operatorname{Exp}(1)$.
import numpy as np
import matplotlib.pyplot as plt
n = int(1e5) \# sample size
$\mathrm{x}=\mathrm{np} . \operatorname{linspace}(0,12,1000)$
lam = 1 \# lambda parameter of Exp distribution
p = lambda x: lam * np.exp(-lam*x) \# PDF
invF = lambda q: -1/lam * np.log(1-q) \# quantile function
$u=n p . r a n d o m . u n i f o r m($ size $=n$) \# i.i.d. sample from $U(0,1)$
sample $=$ invF(u) \# inverse transform
plt.hist(sample,bins='auto',
density=True,label='sample') \# draw histogram plt.plot(x,p(x),linewidth=2,label='PDF') \# plot the PDF plt.legend()
plt.show()

Example

Let the random variable X have the PDF $f_{X}(x)=\left(6 x-6 x^{2}\right) \mathbf{1}_{[0,1]}(x)$. In this case, the quantile function is difficult to write down, but we can still implement inverse transform sampling numerically.

```
import numpy as np
import matplotlib.pyplot as plt
n = int(1e6) # sample size
x = np.linspace(0,1,10000)
p = lambda x: 6*x-6*x**2 # PDF
P = np.cumsum(p(x)); P = P/P[-1] # "empirical" CDF of p
sample = []
for _ in range(n):
    u = np.random.uniform() # realization of U(0,1)
    ind = np.where(u<=P) [0] [0] # inverse transform
    sample.append(x[ind]) # store sample
plt.hist(sample,bins='auto',
                            density=True,label='sample') # draw histogram
plt.plot(x,p(x),linewidth=2,label='PDF') # plot the PDF
plt.legend(); plt.show()
```


Change of variables formula (discrete RVs)

Proposition

Let $X: \Omega \rightarrow E$ and $Y: \Omega \rightarrow F$ be discrete random variables such that $Y=g(X)$, where $g: E \rightarrow F$. Then the PMF of Y is given by

$$
p_{Y}(y)=\sum_{x \in g^{-1}(\{y\})} p_{X}(x)=\sum_{\substack{x \in E \\ g(x)=y}} p_{X}(x) .
$$

In other words, the PMF of Y at point y is obtained by summing up the PMF of X over the preimage $g^{-1}(\{y\})$.

Proof. Recall that $g^{-1}(\{y\})=\{x \in E \mid g(x)=y\}$. Thus

$$
\begin{aligned}
& p_{Y}(y)=\mathbb{P}(Y=y)=\mathbb{P}(g(X)=y)=\mathbb{P}\left(X=g^{-1}(\{y\})\right) \\
& =\mathbb{P}\left(\bigcup_{x \in g^{-1}(\{y\})}\{X=x\}\right)=\sum_{x \in g^{-1}(\{y\})} \mathbb{P}(X=x)=\sum_{x \in g^{-1}(\{y\})} p_{X}(x),
\end{aligned}
$$

where we used the σ-additivity of the disjoint sets $(\{X=x\})_{x \in g^{-1}(y)}$.

Change of variables formula (continuous, univariate case)

Let X and Y be real-valued random variables such that $Y=g(X)$, where $g: \mathbb{R} \rightarrow \mathbb{R}$. By noting that the CDF of Y satisfies

$$
F_{Y}(y)=\mathbb{P}(Y \leq y)=\mathbb{P}(g(X) \leq y),
$$

one can use the following method to obtain the PDF of Y given the PDF of X :

- Compute the CDF of Y using

$$
F_{Y}(y)=\mathbb{P}(g(X) \leq y) \quad \text { for } y \in \mathbb{R}
$$

- If F_{Y} is differentiable, then Y has the PDF $f_{Y}=F_{Y}^{\prime}$.

Example

Let $X \sim \mathcal{U}(0,1), g(x)=x^{2}$, and define $Y=g(X)$. We wish to find $f_{Y}(y)$. We begin by noting that

$$
F_{Y}(y)=\mathbb{P}(g(X) \leq y)=\mathbb{P}\left(X^{2} \leq y\right)= \begin{cases}\mathbb{P}(\varnothing) & \text { if } y<0, \\ \mathbb{P}(-\sqrt{y} \leq X \leq \sqrt{y}) & \text { if } y \geq 0 .\end{cases}
$$

Here, $\mathbb{P}(\varnothing)=0$ and

$$
\mathbb{P}(-\sqrt{y} \leq X \leq \sqrt{y})=\int_{-\sqrt{y}}^{\sqrt{y}} \mathbf{1}_{[0,1]}(x) \mathrm{d} x= \begin{cases}\sqrt{y} & \text { if } y \in[0,1], \\ 1 & \text { if } y>1 .\end{cases}
$$

Hence

$$
F_{Y}(y)=\left\{\begin{array}{ll}
0 & \text { if } y<0 \\
\sqrt{y} & \text { if } y \in[0,1], \\
1 & \text { if } y>1
\end{array} \quad \stackrel{\frac{d}{d y}}{\Rightarrow} \quad f_{Y}(y)=\frac{\mathbf{1}_{[0,1]}(y)}{2 \sqrt{y}}, y \in \mathbb{R} .\right.
$$

In the special case where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly monotonic, continuously differentiable function, one has the following formula.

Theorem
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuously differentiable and strictly monotonic function. Let X and Y be continuous, real-valued random variables satisfying $Y=g(X)$. Then we have the following:

$$
f_{X}(x)=f_{Y}(g(x))\left|g^{\prime}(x)\right|, \quad x \in \mathbb{R}
$$

and

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\left(g^{-1}\right)^{\prime}(y)\right|=f_{X}\left(g^{-1}(y)\right) \frac{1}{\left|g^{\prime}\left(g^{-1}(y)\right)\right|}, \quad y \in \mathbb{R}
$$

Proof. For each (measurable) subset $B \subset \mathbb{R}$, there holds

$$
\mathbb{P}(X \in B)=\mathbb{P}(Y \in g(B))=\int_{g(B)} f_{Y}(y) \mathrm{d} y=\int_{B} f_{Y}(g(x))\left|g^{\prime}(x)\right| \mathrm{d} x
$$

Since B is arbitrary, we conclude that $f_{X}(x)=f_{Y}(g(x))\left|g^{\prime}(x)\right|$.
The second claim follows from the first one by writing $X=g^{-1}(Y)$.

Change of variables formula (continuous, multivariate case)

The change of variables formulae can be generalized to higher dimensions.
For example, let X_{1}, \ldots, X_{k} be real-valued random variables and let $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$. We wish to derive the PDF of the real-valued random variable $Z=g\left(X_{1}, \ldots, X_{k}\right)$.

One can proceed as follows:
(1) Compute the CDF F_{Z} of Z by

$$
F_{Z}(z)=\mathbb{P}\left(g\left(X_{1}, \ldots, X_{k}\right) \leq z\right)
$$

(2) If F_{Z} is differentiable, then its PDF is given by $f_{Z}=F_{Z}^{\prime}$.

Example

Let $X, Y \sim \mathcal{U}(0,1)$ be independent random variables and define $Z=\max (X, Y)$. Now ${ }^{\dagger}$

$$
F_{Z}(z)=\mathbb{P}(\max (X, Y) \leq z)=\mathbb{P}(X \leq z, Y \leq z)
$$

Since X and Y were assumed to be independent, and both X and Y are uniformly distributed in $[0,1]$, we get
$F_{Z}(z)=\mathbb{P}(X \leq z) \mathbb{P}(Y \leq z)=\left(\int_{-\infty}^{z} \mathbf{1}_{[0,1]}(t) \mathrm{d} t\right)^{2}= \begin{cases}0 & \text { if } z<0 \\ z^{2} & \text { if } z \in[0,1] \\ 1 & \text { if } z>1\end{cases}$
Differentiating the above yields

$$
f_{Z}(z)=2 z \mathbf{1}_{[0,1]}(z), \quad z \in \mathbb{R}
$$

[^0]The following change of variable formula works in the case where X, Y are \mathbb{R}^{n}-valued random variables and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is C^{1}-diffeomorphism (i.e., g is a bijection and both g and its inverse g^{-1} are continuously differentiable). The Jacobian matrix of a vector field $F(x)=\left[F_{1}(x), \ldots, F_{n}(x)\right]^{\mathrm{T}}$, where $F_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ for $j=1, \ldots, n$, is

$$
D F(x)=\left[\begin{array}{ccc}
\frac{\partial}{\partial x_{1}} F_{1}(x) & \cdots & \frac{\partial}{\partial x_{n}} F_{1}(x) \\
\vdots & \ddots & \vdots \\
\frac{\partial}{\partial x_{1}} F_{n}(x) & \cdots & \frac{\partial}{\partial x_{n}} F_{n}(x)
\end{array}\right]
$$

Theorem
Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1}-diffeomorphism and let X and Y be \mathbb{R}^{n}-valued random variables such that $Y=g(X)$. Then

$$
f_{X}(x)=f_{Y}(g(x))|\operatorname{det} D g(x)|, \quad x \in \mathbb{R}^{n}
$$

and

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\operatorname{det} D g^{-1}(y)\right|, \quad y \in \mathbb{R}^{n} .
$$

Proof. The argument is exactly the same as the univariate version (use the multivariate change of variables formula for integration).

Example

Assume that g is an affine transformation

$$
g(x)=A x+b, \quad x \in \mathbb{R}^{n}
$$

for some fixed vector $b \in \mathbb{R}^{n}$ and invertible matrix $A \in \mathbb{R}^{n \times n}$. Suppose that X has the PDF f_{X} and $Y=g(X)$. We wish to find the PDF f_{Y} of Y.

The Jacobian matrix of g is given by

$$
D g(x)=A, \quad x \in \mathbb{R}^{n},
$$

and we have

$$
g^{-1}(y)=A^{-1}(y-b) .
$$

Therefore the change of variables formula yields

$$
f_{Y}(y)=f_{X}\left(A^{-1}(y-b)\right)\left|\operatorname{det} A^{-1}\right|=f_{X}\left(A^{-1}(y-b)\right) \frac{1}{|\operatorname{det} A|}, \quad y \in \mathbb{R}^{n} .
$$

Sums of independent random variables

Theorem

Let X and Y be independent, real-valued discrete random variables with PMFs p_{X} and p_{Y}, respectively. Then the random variable $Z=X+Y$ has the PMF

$$
p_{Z}(z)=\sum_{x \in E} p_{X}(x) p_{Y}(z-x)
$$

Example

Let $X \sim \operatorname{Poisson}(\lambda)$ and $Y \sim \operatorname{Poisson}(\mu)$ be two independent Poisson random variables with parameters $\lambda, \mu>0$. Then $X+Y \sim \operatorname{Poisson}(\lambda+\mu)$.

Theorem

Let X and Y be independent, real-valued continuous random variables with PDFs f_{X} and f_{Y}, respectively. Then the random variable $Z=X+Y$ has the PDF

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) \mathrm{d} x, \quad z \in \mathbb{R}
$$

This is the convolution of f_{X} and f_{Y} and denoted $f_{Z}(z)=\left(f_{X} * f_{Y}\right)(z)$.

Positive definite matrices

Definition

Let $A \in \mathbb{R}^{d \times d}$ be a symmetric matrix. We call A a positive definite matrix if

$$
x^{\mathrm{T}} A x>0 \quad \text { for all } x \in \mathbb{R}^{d} \backslash\{0\} .
$$

This implies that A is invertible and that A^{-1} is positive definite if A is.
Characterization
Let $A \in \mathbb{R}^{d \times d}$ be a symmetric matrix. Then the following are equivalent:

- The matrix A is positive definite.
- The eigenvalues of A are positive.
- The matrix A has a Cholesky decomposition: there exists an upper triangular matrix $R \in \mathbb{R}^{d \times d}$ such that

$$
A=R^{\mathrm{T}} R
$$

- The matrix A has a matrix square root, denoted by $A^{1 / 2}$, which satisfies

$$
A=A^{1 / 2} A^{1 / 2}
$$

Note that the matrix square root $A^{1 / 2}$ is also positive definite.

Multivariate Gaussian random variables

Definition

Let $\mu \in \mathbb{R}^{d}$ and let $C \in \mathbb{R}^{d \times d}$ be a positive definite matrix. We call a random variable X on \mathbb{R}^{d} a multivariate Gaussian random variable with mean μ and covariance C if it has the PDF

$$
f_{X}(x)=\left(\frac{1}{(2 \pi)^{d} \operatorname{det} C}\right)^{1 / 2} \exp \left(-\frac{1}{2}(x-\mu)^{\mathrm{T}} C^{-1}(x-\mu)\right), \quad x \in \mathbb{R}^{d}
$$

In this case, we denote $X \sim \mathcal{N}(\mu, C)$.
Remark. There exists a concept of Gaussian random variable even in the case where the matrix C is positive semi-definite, i.e., at least one of its eigenvalues is 0 , but such a random variable does not have a well-defined PDF (it is a "degenerate" random variable). The definition uses the so-called characteristic function. We omit the details.
The inverse of the covariance matrix is sometimes called a precision matrix. An often used notation is $\|x\|_{C}=\sqrt{x^{T} C^{-1} x}$ for $x \in \mathbb{R}^{d}$.

Transformations of Gaussian random variables

Gaussian random variables behave predictably under affine transformations:

- Multiplying a Gaussian RV yields another Gaussian RV with an updated variance, but the same mean.
- Translating a Gaussian RV yields another Gaussian RV with an updated mean, but the same variance.
- An affine transformation of a Gaussian RV yields another Gaussian RVs with an updated mean and variance.
- Nonlinear transformations of Gaussian RVs are typically no longer Gaussian RVs!
- For example, the Euclidean norm $Y=\|X\|$ of a Gaussian RV is not Gaussian (it follows a so-called "folded normal distribution").
- The sum of squares of independent Gaussian $\mathrm{RVs} Z=X_{1}^{2}+\cdots+X_{k}^{2}$, where X_{i} are assumed to be independent Gaussian RVs, has the $\chi^{2}(k)$ distribution.

Proposition (ZCA transform, univariate version)
Let $\mu \in \mathbb{R}$ and $\sigma>0$. The univariate Gaussian distribution satisfies the following properties:
(1) If $X \sim \mathcal{N}(0,1)$, then $Y:=\mu+\sigma X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
(2) If $Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $X:=\frac{1}{\sigma}(Y-\mu) \sim \mathcal{N}(0,1)$.

Proposition (ZCA transform, multivariate version) Let $\mu \in \mathbb{R}^{d}$ and let $C \in \mathbb{R}^{d \times d}$ be a symmetric positive definite covariance matrix. The multivariate Gaussian distribution satisfies the following properties:
(1) If $X \sim \mathcal{N}\left(0, I_{d}\right)$, then $Y:=\mu+C^{1 / 2} X \sim \mathcal{N}(\mu, C)$.
(2) If $Y \sim \mathcal{N}(\mu, C)$, then $X:=C^{-1 / 2}(Y-\mu) \sim \mathcal{N}\left(0, I_{d}\right)$.
(Here, $C^{-1 / 2}:=\left(C^{1 / 2}\right)^{-1}$ is the inverse of the matrix square root of C.)
Remark. (1) is called a Mahalanobis or ZCA ${ }^{\dagger}$ coloring transform: it turns a standard Gaussian RV into a Gaussian RV with specified mean and covariance. (2) is called a Mahalanobis or ZCA ${ }^{\dagger}$ whitening transform: it turns a Gaussian RV with a specified mean and covariance into a standard Gaussian RV.
${ }^{\dagger}$ Zero-phase component analysis

Proof. Let us prove claim (1) of the multivariate version. Let $X \sim \mathcal{N}\left(0, I_{d}\right)$ and define $Y=\mu+C^{1 / 2} x$. By defining $g(x)=\mu+C^{1 / 2} x$, we can write

$$
Y=g(X) \Rightarrow f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\operatorname{det} D g^{-1}(y)\right| .
$$

In this case, we have

$$
g^{-1}(y)=C^{-1 / 2}(y-\mu) \quad \text { and } \quad\left|\operatorname{det} D g^{-1}(y)\right|=\left|\operatorname{det} C^{-1 / 2}\right|=\frac{1}{\sqrt{\operatorname{det} C}} .
$$

Therefore

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{(2 \pi)^{d / 2}} \exp \left(-\frac{1}{2}\left\|C^{-1 / 2}(y-\mu)\right\|^{2}\right) \frac{1}{\sqrt{\operatorname{det} C}} \\
& =\left(\frac{1}{(2 \pi)^{d} \operatorname{det} C}\right)^{1 / 2} \exp \left(-\frac{1}{2}(x-\mu)^{\mathrm{T}} C^{-1}(x-\mu)\right)
\end{aligned}
$$

which implies that $Y \sim \mathcal{N}(\mu, C)$.
The proof for (2) follows by writing $X=g^{-1}(Y)$ and using the change of variables formula $f_{X}(x)=f_{Y}(g(x)) \mid$ det $D g(x) \mid$.

Different coloring transforms

Let $\mu \in \mathbb{R}^{d}$, let $C \in \mathbb{R}^{d \times d}$ be a symmetric positive covariance matrix, and let $X \sim \mathcal{N}\left(0, I_{d}\right)$.

- The Mahalanobis or ZCA coloring transform uses the matrix square root factorization $C=C^{1 / 2} C^{1 / 2}$ to write a standard Gaussian RV as

$$
Y=\mu+C^{1 / 2} X \sim \mathcal{N}(\mu, C)
$$

- One could alternatively use the Cholesky decomposition $C=R^{\mathrm{T}} R$ to obtain the Cholesky coloring transform

$$
Y=\mu+R^{\mathrm{T}} X \sim \mathcal{N}(\mu, C)
$$

- Finally, one could use the eigendecomposition
$C=U \Lambda U^{\mathrm{T}}=\left(U \Lambda^{1 / 2}\right)\left(U \Lambda^{1 / 2}\right)^{\mathrm{T}}$, where $U U^{\mathrm{T}}=I=U^{\mathrm{T}} U$ and Λ is a diagonal matrix containing the eigenvalues of C, to obtain the PCA^{\dagger} coloring transform

$$
Y=\mu+U \Lambda^{1 / 2} X \sim \mathcal{N}(\mu, C)
$$

[^1]

Coloring transforms with $\mu=[1,2]^{\mathrm{T}}$ and $C=\left[\begin{array}{cc}1 & 0.95 \\ 0.95 & 1\end{array}\right]$.

Different whitening transforms

Let $\mu \in \mathbb{R}^{d}$, let $C \in \mathbb{R}^{d \times d}$ be a symmetric positive covariance matrix, and let $Y \sim \mathcal{N}(\mu, C)$.

- The Mahalanobis or ZCA whitening transform uses the matrix square root factorization $C=C^{1 / 2} C^{1 / 2}$ to write a standard Gaussian RV as

$$
X=C^{-1 / 2}(Y-\mu) \sim \mathcal{N}\left(0, I_{d}\right)
$$

- One could alternatively use the Cholesky decomposition $C=R^{\mathrm{T}} R$ to obtain the Cholesky whitening transform

$$
X=R^{-\mathrm{T}}(Y-\mu) \sim \mathcal{N}\left(0, I_{d}\right)
$$

- Finally, one could use the eigendecomposition $C=U \Lambda U^{\mathrm{T}}=\left(U \Lambda^{1 / 2}\right)\left(U \Lambda^{1 / 2}\right)^{\mathrm{T}}$, where $U U^{\mathrm{T}}=I=U^{\mathrm{T}} U$ and Λ is a diagonal matrix containing the eigenvalues of C, to obtain the PCA whitening transform

$$
X=\Lambda^{-1 / 2} U^{\mathrm{T}}(Y-\mu) \sim \mathcal{N}\left(0, I_{d}\right)
$$

Note: the three RVs obtained using different whitening transforms are rotations of one another.

Whitening transforms with $\mu=[1,2]^{\mathrm{T}}$ and $C=\left[\begin{array}{cc}1 & -0.99 \\ -0.99 & 1\end{array}\right]$.

By inductive reasoning, one can deduce that any finite linear combination of Gaussian RVs is a Gaussian RV.

Proposition (Univariate version)
Let $X_{j} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$ be independent Gaussian random variables with $\mu_{i} \in \mathbb{R}$ and $\sigma_{i}>0$ for $i=1, \ldots, n$. Then

$$
X:=\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

Proposition (Multivariate version)
Let $X_{j} \sim \mathcal{N}\left(\mu_{i}, C_{i}\right)$ be independent Gaussian random variables with $\mu_{i} \in \mathbb{R}^{d}$ and symmetric, positive definite $C_{i} \in \mathbb{R}^{d \times d}$ for $i=1, \ldots, n$. Then

$$
X:=\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} C_{i}\right)
$$

Proposition

Let $\mu \in \mathbb{R}^{d}$ and let $C \in \mathbb{R}^{d \times d}$ be a symmetric, positive definite matrix. Let $X \sim \mathcal{N}(\mu, C)$. If $k \leq d$ and $L \in \mathbb{R}^{k \times d}$ is a matrix with full rank, then

$$
Y=L X \sim \mathcal{N}\left(L \mu, L C L^{\mathrm{T}}\right)
$$

Proof. Omitted.

[^0]: ${ }^{\dagger}$ Note that $\max (X, Y) \leq z \Leftrightarrow X \leq z$ and $Y \leq z$. Recall also the notation $\mathbb{P}(X \leq z, Y \leq z)=\mathbb{P}(X \leq z$ and $Y \leq z)$.

[^1]: ${ }^{\dagger}$ Principal component analysis

