
Statistics for Data Science
Wintersemester 2023/24

Vesa Kaarnioja
vesa.kaarnioja@fu-berlin.de

FU Berlin, FB Mathematik und Informatik

Fourth lecture, November 6, 2023



Expected value and covariance
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Example

If a random variable X takes finitely many values x1, . . . , xn with equal
probability, it is natural to define the average of X as the arithmetic
average 1

n

∑n
i=1 xi .

More generally, if X takes the value xi with probability pi , then it is
natural to define the average of X as the weighted average

∑n
i=1 pixi , i.e.,

values xi which are more likely to be realized are assigned a larger weight
and vice versa for values xi which are less likely to occur.

The expected value of a random variable is used to formaize the notion of
“mean” or “average” of a real-valued random variable X .
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Definition (Expected value of a discrete, real-valued RV)

Let X be a discrete, real-valued random variable with target space
E ⊂ R and PMF pX . The expected value (also called mean) of X is

E[X ] =
∑
x∈E

x pX (x). (1)

Definition (Expected value of a continuous, real-valued RV)

Let X be a continuous, real-valued random variable with PDF fX . The
expected value (also called mean) of X is

E[X ] =

∫ ∞

−∞
x fX (x) dx . (2)

A random variable X is called integrable if

X is a discrete, real-valued random variable and the series (1) is
absolutely convergent.
X is a continuous, real-valued random variable and the integral (2) is
absolutely convergent.
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Example
The expected value of X can be interpreted as the value that X will take
on average. If we observe realizations x1, . . . , xn of X , then for large n, the
empirical mean should be close to E[X ] :

1

n

n∑
i=1

xi ≈ E[X ].

Example
Assume that X is deterministic, i.e., there exists x ∈ R such that X = x
almost surely†. Then E[X ] = x .

Example
Let X be a discrete random variable with a finite target space E ⊂ R.
Suppose that X is uniformly distributed in E . Then

E[X ] =
1

|E |
∑
x∈E

x ,

so the expected value of X coincides with the algebraic average of the
values x ∈ E.

†The term “almost surely”, abbreviated “a.s.”, means that the probability of this
outcome is 1.
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Example

Let a < b and assume that X ∼ U(a, b). Then fX (x) =
1(a,b)(x)

b−a , and

E[X ] =

∫ ∞

−∞
x
1(a,b)(x)

b − a
dx =

∫ b

a

x

b − a
dx =

a+ b

2
.

Example
Let µ ∈ R and σ > 0 and consider X ∼ N (µ, σ2). Then

E[X ] =

∫ ∞

−∞
x

1√
2πσ2

e−
1

2σ2 (x−µ)2 dx .

Performing the change of variables y = x − µ, we obtain

E[X ] =

∫ ∞

−∞
(y + µ)

1√
2πσ2

e−
1

2σ2 y
2

dy

=
1

2πσ2

∫ ∞

−∞
ye−

1
2σ2 y

2

dy︸ ︷︷ ︸
= 0 as an odd function of y

+ µ
1√
2πσ2

∫ ∞

−∞
e−

1
2σ2 y

2

dy︸ ︷︷ ︸
= 1 (PDF integrates to 1 over R)

= µ.

This justifies calling the parameter µ the mean of the Gaussian RV X .
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In many cases, one is interested in the expected value of some derived
quantity of the random variable X . The following result makes this simple.

Theorem (Law of the unconscious statistician)

If X is a discrete random variable with PMF pX and g : E → R
’
then

E[g(X )] =
∑
x∈E

g(x)pX (x).

If X is a continuous RV with PDF fX and g : R → R continuous,

E[g(X )] =

∫ ∞

−∞
g(x)fX (x)dx .

If X is a continuous Rk -valued RV with PDF fX and g : Rk → Rk

continuous,

E[g(X )] =

∫
Rk

g(x)fX (x) dx .

In other words, it is enough to know the distribution of X in order to be
able to compute E[g(X )] for any continuous function g . It is not
necessary to solve the distribution of g(X ). 102



Example
A stick of length 1 is broken into two pieces at a uniformly random point
between 0 and 1. Let Y denote the length of the larger piece and we wish
to know E[Y ].

Let X ∼ U(0, 1) denote the position of the breaking point. Then
Y = max(X , 1− X ). By the law of the unconscious statistician, we obtain

E[Y ] =

∫ ∞

−∞
max(x , 1− x) 1(0,1)(x)dx =

∫ 1

0
max(x , 1− x)dx

=

∫ 1/2

0
(1− x)dx +

∫ 1

1/2
x dx =

1

2
− 1

8
+

1

2
− 1

8
=

3

4
.

Example (Moments)

An important class of maps g are given by g(x) = xk . Then

E[X k ] =

{∑
x∈E xkpX (x) if X is a discrete RV with target space E ⊂ R∫∞

−∞ xk fX (x) dx if X is a continuous, real-valued RV

is the kth moment of X . (If E[|X |k ] = ∞, the moment is said not to exist.)

If this expression is finite for k = 2, then X is called square-integrable.
103



Example

Let a < b and assume that X ∼ U(a, b). Then

E[X 2] =

∫ ∞

−∞
x2

1(a,b)(x)

b − a
dx =

∫ b

a
x2

1

b − a
dx

=
b3 − a3

3(b − a)
=

a2 + ab + b2

3
.
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The probability of an event A of a probability space (Ω,P) can be written
as the expected value of the indicator function for set A.

Proposition

Let (Ω,P) be a probability space and let A ⊂ Ω be an event. Define the
random variable 1A : Ω → R,

1A(ω) =

{
1 if ω ∈ A,

0 if ω ̸∈ A.

Then
E[1A] = P(A).

Proof. Since X is a discrete random variable taking values in E = {0, 1},
its PMF satisfies

pX (0) = P(A∁) = 1− P(A), pX (1) = P(A).

Hence
E[X ] = 0 · pX (0) + 1 · pX (1) = P(A).
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Properties of the expected value

Proposition

Let X be a real-valued random variable and a, b ∈ R. Then

E[aX + b] = aE[X ] + b.

Proof. E[aX + b] =
∫
R(ax + b)fX (x) dx = a

∫
R xfX (x) dx︸ ︷︷ ︸

=E[X ]

+ b
∫
R fX (x)dx︸ ︷︷ ︸

=1

.

Theorem

1 If X ≥ 0 almost surely, then E[X ] ≥ 0. (Similarly, if X ≤ 0 almost
surely, then E[X ] ≤ 0.)

2 If X1, . . . ,Xn are real-valued random variables and α1, . . . , αn ∈ R,
then

E
[ n∑

i=1

αiXi

]
=

n∑
i=1

αiE[Xi ].

3 If X ≤ Y almost surely, then E[X ] ≤ E[Y ].
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Finally, the expected value of a product of independent random variables is
the product of the expected values.

Theorem

Let X1, . . . ,Xn be independent real-valued random variables. Then

E
[ n∏
i=1

Xi

]
=

n∏
i=1

E[Xi ].

107



Variance

Definition

Let X be a real-valued random variable with mean µ = E[X ]. The
variance of X is defined as

Var(X ) = E[(X − µ)2].

Note that this quantity is well-defined provided that E[X 2] < ∞.
The standard deviation of X is defined as

σX =
√
Var(X ).

Note that Var(X ) =
∑

x∈E (x − µ)2pX (x) if X is a discrete random
variable with PMF pX , and Var(X ) =

∫∞
−∞(x − µ)2fX (x) dx is X if a

continuous random variable with PDF fX .

The variance Var(X ) is always nonnegative. While E[X ] represents
the average value of X , Var(X ) quantifies how far realizations of X
can spread away from this average value.
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Theorem (Variance translation)

Let µ = E[X ] denote the mean of random variable X . Then

Var(X ) = E[X 2]− µ2.

Proof.

Var(X ) = E[(X − µ)2] = E[X 2 − 2µX + µ2] = E[X 2]− 2µE[X ]︸︷︷︸
=µ

+ µ2

= E[X 2]− µ2.

Remark. If the random variable X satisfies E[X ] = 0, then we say that X
is centered. In this case, we simply have Var(X ) = E[X 2].
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Example

Let a < b and suppose that X ∼ U(a, b). We have already computed that

E[X ] =
a+ b

2
and E[X 2] =

a2 + ab + b2

3
.

Therefore

Var(X ) =
a2 + ab + b2

3
− (a+ b)2

4
=

(b − a)2

12
,

and the standard deviation σX = b−a
2
√
3
. Hence, the larger the interval [a, b]

for the uniform distribution, the larger the standard deviation.
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Example

Let µ ∈ R and σ > 0 and suppose that X ∼ N (µ, σ2). Then

Var(X ) =

∫ ∞

−∞
(x − µ)2

1√
2πσ2

e−
1

2σ2 (x−µ)2 dx .

Carrying out the change of variables y = x−µ
σ , where dx = σ dy , we get

Var(X ) =
σ2

√
2π

∫ ∞

−∞
y2e−

1
2
y2
dy .

Since ∫ ∞

−∞
y2e−

1
2
y2
dy =

√
2π (3)

(see the following slide for an argument), we conclude that

Var(X ) = σ2.

This justifies calling the parameter σ2 the variance of the Gaussian RV X .
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Intermezzo – computing the value of the integral (3)

Let a > 0 be a parameter and consider the following parametric integral:

I (a) : =

∫ ∞

−∞
y2e−

1
2
ay2

dy = −2

∫ ∞

−∞

∂

∂a
e−

1
2
ay2

dy

(∗)
= −2

d

da

∫ ∞

−∞
e−

1
2
ay2

dy .

Applying 1√
2πσ2

∫∞
−∞ e−

1
2σ2 x

2

dx = 1 ⇔
∫∞
−∞ e−

1
2σ2 x

2

dx =
√
2πσ

with σ = 1√
a
yields

I (a) = −2
d

da

√
2π√
a

=

√
2π

a3/2
.

The value of the integral (3) corresponds to I (1) =
√
2π.

This technique is known as the “Leibniz integral rule”, or “Feynman’s
differentiation under the integral sign”. The difficult part is verifying that
the order of integration and differentiation can be switched in (∗). This is
allowed, e.g., when the integrand f (a, y) is continuously differentiable.
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Theorem

1 If X is a real-valued random variable and a, b ∈ R, then

Var(aX + b) = a2Var(X ).

2 If X1, . . . ,Xn are independent real-valued random variables and
a1, . . . , an ∈ R, then

Var

( n∑
i=1

aiXi

)
=

n∑
i=1

a2i Var(Xi ).
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Covariance and correlation

Definition

Let X and Y be two real-valued random variables with means µX = E[X ]
and µY = E[Y ]. Then the covariance of X and Y is

Cov(X ,Y ) = E[(X − µX )(Y − µY )].

If σ2
X = Var(X ) and σ2

Y = Var(Y ) are the variances, then the correlation
of X and Y is

ρX ,Y =
Cov(X ,Y )

σXσY
.

Remark. The correlation always satisfies

−1 ≤ ρX ,Y ≤ 1

as a consequence of the Cauchy–Schwarz inequality.
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Theorem

Let X and Y be two real-valued random variables with means
µX = E[X ] and µY = E[Y ]. Then

Cov(X ,Y ) = E[XY ]− µXµY .

Proof.

Cov(X ,Y ) = E[(X − µX )(Y − µY )]

= E[XY − µYX − µXY + µXµY ]

= E[XY ]− µYE[X ]︸︷︷︸
=µX

− µXE[Y ]︸ ︷︷ ︸
=µY

+ µXµY

= E[XY ]− µXµY .

The random variables X and Y are said to be uncorrelated if
Cov(X ,Y ) = 0.
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Theorem

If X and Y are independent, then X and Y are uncorrelated.

Proof. Since E[XY ] = E[X ]E[Y ] for independent X and Y , there holds

Cov(X ,Y ) = E[XY ]− µXµY = E[X ]︸︷︷︸
=µX

E[Y ]︸ ︷︷ ︸
=µY

− µXµY = 0.

Note that, in general, X ,Y are uncorrelated ̸⇒ X ,Y are independent!
(However, this converse statement does hold for jointly Gaussian
distributions – we will formulate a special case of this in a moment.)

Theorem

Var(X + Y ) = Var(X ) + 2Cov(X ,Y ) +Var(Y ),

Var(X − Y ) = Var(X )− 2Cov(X ,Y ) +Var(Y ).
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Joint random variables

Definition

Let X = (X1, . . . ,Xd), d ∈ N, be a joint random variable. We define the
mean µ = (µi )

d
i=1 ∈ Rd and the covariance matrix C = (Ci ,j)

d
i ,j=1 ∈ Rd×d

of X by

µi = E[Xi ] for i = 1, . . . , d ,

Ci ,j = Cov(Xi ,Xj) for i , j = 1, . . . , d .

Example

Let X = (X1, . . . ,Xd) be a d-dimensional Gaussian random variable
X ∼ N (µ,C ), where µ = (µi )

d
i=1 ∈ Rd and C = (Ci ,j)

n
i ,j=1 ∈ Rd×d is a

symmetric, positive definite matrix. Then

µi = E[Xi ] for i = 1, . . . , d ,

Ci ,j = Cov(Xi ,Xj) for i , j = 1, . . . , d ,

meaning that µ is the mean of X and C is the covariance matrix of X . 117



Corollary (Independence of jointly Gaussian random variables)

Let X = (X1, . . . ,Xd) ∼ N (µ,C ) for µ = (µj)
d
j=1 ∈ Rd and symmetric,

positive definite C = (Ci ,j)
d
i ,j=1 ∈ Rd×d . Then X1, . . . ,Xd are independent

if and only if C is a diagonal matrix, i.e., Ci ,j = 0 whenever i ̸= j .

Proof. “⇒” If X1, . . . ,Xd are independent, then Xi and Xj are
independent for all i ̸= j . Independent random variables are uncorrelated,
so the covariance

Ci ,j = Cov(Xi ,Xj) = 0 whenever i ̸= j .

“⇐” Let C = diag(σ2
1, . . . , σ

2
d). Then the marginal distribution of Xj is

Gaussian, with PDF fXj
(x) = 1√

2πσ2
j

e
− 1

2σ2
j

(x−µj )
2

. Hence,

fX (x) =
1

(2π)d/2
√
detC

e−
1
2
(x−µ)TC−1(x−µ) =

d∏
j=1

1√
2πσ2

j

e
− 1

2σ2
j

(xj−µj )
2

,

i.e., fX (x) = fX1(x1) · · · fXd
(xd), meaning that X1, . . . ,Xd are

independent.
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Sample mean and sample variance

In practice, the random variables are not observed directly: we observe realizations, or a
sample, thereof. It is useful to define notions of sample mean and sample variance,
which are quantities that can be computed directly from the observed realizations.

Definition
Let X1, . . . ,Xn be real-valued random variables†. The sample mean of is defined as the
arithmetic average

X n =
1

n

n∑
i=1

Xi .

The sample variance is defined as

s2n =
1

n − 1

n∑
i=1

(Xi − X n)
2,

and the sample standard deviation is defined as sn =
√
s2n .

Remark. Note that the sample mean X n and the sample variance s2n are themselves
random variables. As we shall see, if X1, . . . ,Xn are independent and identically
distributed provided some integrability conditions are satisfied, then there holds for large
n that

X n ≈ E[X1] and s2n ≈ Var(X1).

†One may think of X1, . . . ,Xn as representing a sample from some random variable X .
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Sample covariance of vector-valued random variables

If X1, . . . ,Xn are vector-valued random variables taking values in Rd , then
their sample covariance matrix Q = (Qj ,k)

n
j ,k=1 is defined as

Qj ,k =
1

n − 1

n∑
i=1

(Xi ,j − µj)(Xi ,k − µk), j , k = 1, . . . , d ,

where µ = X = (X 1, . . . ,X d) is the mean.
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