Statistics for Data Science

Wintersemester 2023/24

Vesa Kaarnioja
vesa.kaarnioja@fu-berlin.de

FU Berlin, FB Mathematik und Informatik
Fifth lecture, November 13, 2023

Inequalities and limits

Random sample / i.i.d. random variables

Let X_{1}, \ldots, X_{n} be random variables. We call X_{1}, \ldots, X_{n} a random sample if the random variables are independent and identically distributed (i.i.d.).

- Independent means that X_{1}, \ldots, X_{n} are mutually independent random variables.
- Identically distributed means that X_{1}, \ldots, X_{n} all have the same law. Often, we specify the law (probability distribution) of a random variable X and say that X_{1}, \ldots, X_{n} are i.i.d. copies of X.

Example

Let $X \sim \mathcal{N}(0,1)$. Suppose that X_{1}, \ldots, X_{n} are i.i.d. copies of X. This means that

- $X_{i} \sim \mathcal{N}(0,1)$ for all $i=1, \ldots, n$ ("identically distributed")
- X_{i} are mutually independent:
$p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=p_{X}\left(x_{1}\right) \cdots p_{X}\left(x_{n}\right)$, where $p_{X}(x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2} x^{2}}$ is the PDF of $X \sim \mathcal{N}(0,1)$. ("independence")

In practice, the terms "random sample" and "i.i.d." are interchangeable.

- We begin by deriving bounds on the probabilities that a random variable X stays away from its mean by a certain distance $t>0$:

$$
\mathbb{P}(|X-\mathbb{E}[X]|>t)
$$

- Then we discuss two results, which lie at the heart of statistical inference: the Law of Large Numbers (LLN) and the Central Limit Theorem (CLT). The LLN states that, if X_{1}, X_{2}, \ldots are i.i.d. random variables with finite mean, then

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{n \rightarrow \infty} \mathbb{E}\left[X_{1}\right]
$$

where the convergence happens in a sense to be specified. The CLT states that, if the i.i.d. random variables X_{1}, X_{2}, \ldots have finite variance, then this convergence happens at rate $\mathcal{O}\left(n^{-1 / 2}\right)$.

- Together, these two results can be used to obtain approximate bounds on the probability that the empirical sum remains away from its mean:

$$
\mathbb{P}\left(\left|\bar{X}_{n}-\mathbb{E}[X]\right|>\frac{t}{\sqrt{n}}\right)
$$

for fixed $t>0$ and n large.

Inequalities for expected values

Theorem (Cauchy-Schwarz inequality)
Let X and Y be two square-integrable, real-valued random variables. ${ }^{\dagger}$
Then

$$
\mathbb{E}[X Y] \leq \sqrt{\mathbb{E}\left[X^{2}\right]} \sqrt{\mathbb{E}\left[Y^{2}\right]} .
$$

Proof. If $X=0$ or $Y=0$ almost surely, then the claim is trivial. Suppose that $X \neq 0$ and $Y \neq 0$ almost surely. Let $t \in \mathbb{R}$ and note that

$$
0 \leq \mathbb{E}\left[(X+t Y)^{2}\right]=\mathbb{E}\left[X^{2}\right]+2 t \mathbb{E}[X Y]+t^{2} \mathbb{E}\left[Y^{2}\right]
$$

is a second degree polynomial with respect to t which has at most one real root. Therefore its discriminant must be nonpositive:

$$
\begin{aligned}
\text { discriminant } \leq 0 & \Leftrightarrow(2 \mathbb{E}[X Y])^{2}-4 \mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right] \leq 0 \\
& \Leftrightarrow \mathbb{E}[X Y]^{2} \leq \mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right] .
\end{aligned}
$$

[^0]Let X be a real-valued random variable. A fundamental problem in statistics is to be able to bound from above the probability $\mathbb{P}(X>t)$ for fixed $t>0$. Bounds of the following kind are known as "tail bounds".

Theorem (Markov's inequality)
If X is an integrable ${ }^{\dagger}$, non-negative real-valued random variable and $t>0$, then

$$
\mathbb{P}(X>t) \leq \frac{\mathbb{E}[X]}{t}
$$

Proof. Let us consider the case of X being a continuous RV (the discrete case is similar). There holds

$$
\mathbb{P}(X>t)=\int_{t}^{\infty} f_{X}(x) \mathrm{d} x \stackrel{(*)}{\leq} \frac{1}{t} \int_{t}^{\infty} x f_{X}(x) \mathrm{d} x \leq \frac{1}{t} \int_{0}^{\infty} x f_{X}(x) \mathrm{d} x
$$

where $(*)$ follows from $x \geq t \Leftrightarrow 1 \leq \frac{x}{t}$. Since we assumed that X is non-negative, $f_{X}(x)=0$ for $x<0$, and thus

$$
\mathbb{P}(X>t) \leq \frac{1}{t} \int_{0}^{\infty} x f_{X}(x) \mathrm{d} x=\frac{1}{t} \int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x=\frac{\mathbb{E}[X]}{t}
$$

If X is a square-integrable random variable, then we can bound the probability that X is at least distance $t>0$ away from the average.

Theorem (Chebyshev's inequality)
Let X be a square-integrable random variable. For all $t>0$,

$$
\mathbb{P}(|X-\mathbb{E}[X]|>t) \leq \frac{\operatorname{Var}(X)}{t^{2}}
$$

Proof. By Markov's inequality,

$$
\mathbb{P}(|X-\mathbb{E}[X]|>t)=\mathbb{P}\left(|X-\mathbb{E}[X]|^{2}>t^{2}\right) \leq \frac{\mathbb{E}\left[|X-\mathbb{E}[X]|^{2}\right]}{t^{2}}=\frac{\operatorname{Var}(X)}{t^{2}}
$$

where we applied Markov's inequality $\mathbb{P}\left(Y>t^{\prime}\right) \leq \frac{\mathbb{E}[Y]}{t^{\prime}}$ to the non-negative random variable $Y=|X-\mathbb{E}[X]|^{2}$ and $t^{\prime}=t^{2}$.

Let $\sigma=\sqrt{\operatorname{Var}(X)}$. It is sometimes useful to rewrite the Chebyshev inequality in the form (set $t=k \sigma$)

$$
\mathbb{P}(|X-\mathbb{E}[X]|>k \sigma) \leq \frac{1}{k^{2}}
$$

If $k=2$, then $1-\frac{1}{k^{2}}=75 \%$.
If $k=3$, then $1-\frac{1}{k^{3}} \approx 88.9 \%$.
In practice, expected value and variance must be estimated. Chebyshev's inequality can be used to evaluate the rareness of a single observation.

The Chebyshev inequality can be useful in situations where we only know the mean and variance of X. On the other hand, it is quite a rough bound. If we know the distribution of X, the probability $\mathbb{P}(|X-\mathbb{E}[X]|>t)$ can be computed more precisely, typically leading to much better bounds.

Example

Let X be a random variable with mean $\mathbb{E}[X]=0$ and variance
$\operatorname{Var}(X)=1$. Suppose that we wish to estimate $\mathbb{P}(|X|>2)$.
If the mean and variance is all we know about the random variable, then Chebyshev's inequality gives a very rough bound:

$$
\mathbb{P}(|X|>2) \leq \frac{1}{2^{2}}=\frac{1}{4}=0.25
$$

If X is a Gaussian random variable, i.e., in this case we would have $X \sim \mathcal{N}(0,1)$, then we know precisely

$$
\mathbb{P}(|X|>2)=2 \Phi(-2)=0.04550 \ldots
$$

If X is a Gaussian random variable, then the probabilities $\mathbb{P}(|X|>t)$, $t>0$, can be computed numerically using the CDF. Unfortunately, the CDF does not have a closed form expression. Sometimes the following bound is useful.

Theorem (Mill's inequality)
Let $X \sim \mathcal{N}(0,1)$. Then for all $t>0$,

$$
\mathbb{P}(|X|>t) \leq \sqrt{\frac{2}{\pi}} \frac{\exp \left(-\frac{1}{2} t^{2}\right)}{t}
$$

Proof. Let $X \sim \mathcal{N}(0,1)$ and $t>0$. Then

$$
\begin{aligned}
& \mathbb{P}(|X|>t)=\int_{-\infty}^{-t} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{s^{2}}{2}} \mathrm{~d} s+\int_{t}^{\infty} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{s^{2}}{2}} \mathrm{~d} s \\
&=2 \int_{t}^{\infty} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{s^{2}}{2}} \mathrm{~d} s .
\end{aligned}
$$

It is enough to bound this last integral.

Arguing similarly as in the proof of Markov's inequality,

$$
\int_{t}^{\infty} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{s^{2}}{2}} \mathrm{~d} s \leq \int_{t}^{\infty} \frac{s}{t} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{s^{2}}{2}} \mathrm{~d} s=\frac{1}{t \sqrt{2 \pi}} \int_{t}^{\infty} s \mathrm{e}^{-\frac{s^{2}}{2}} \mathrm{~d} s
$$

For this integral, we have

$$
\int_{t}^{\infty} s \mathrm{e}^{-\frac{s^{2}}{2}} \mathrm{~d} s=-\left.\left[\mathrm{e}^{-\frac{s^{2}}{2}}\right]\right|_{s=t} ^{s=\infty}=\mathrm{e}^{-\frac{t^{2}}{2}}
$$

which yields the assertion.

The previous result can be generalized to Gaussian random variables with arbitrary covariances via the whitening transform.

Theorem
Let $\mu \in \mathbb{R}, \sigma>0$, and let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Then for all $t>0$,

$$
\mathbb{P}(|X-\mathbb{E}[X]|>t) \leq \sqrt{\frac{2 \sigma^{2}}{\pi}} \frac{\mathrm{e}^{-\frac{t^{2}}{2 \sigma^{2}}}}{t}
$$

Proof. By the whitening transform, the random variable $Y=\frac{1}{\sigma}(X-\mu) \sim \mathcal{N}(0,1)$, so

$$
\mathbb{P}(|X-\mu|>t)=\mathbb{P}\left(|Y|>\sigma^{-1} t\right)
$$

and the result follows from Mill's inequality with t replaced by $\sigma^{-1} t$.

Limit theorems

We will state two fundamental limit theorems for sums of i.i.d. random variables. To do so, we will first need to define what we mean by convergence of a sequence of random variables.

Definition (Convergence in probability)
Let X be a real-valued random variable and let $\left(X_{n}\right)_{n \geq 0}$ be a sequence of real-valued random variables. We say that X_{n} converges to X in probability, and write $X_{n} \xrightarrow{P} X$, if for any $\varepsilon>0$, there holds

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right)=0
$$

In other words, X_{n} converges to X in probability if the probability that X_{n} is separated from X by any (even very small) non-zero distance vanishes as n grows.

Another, weaker form of convergence involves the CDFs $F_{X_{n}}$ and F_{X} of the RVs X_{n} and X, respectively.

Definition

Let X be a real-valued random variable and let $\left(X_{n}\right)_{n \geq 0}$ be a sequence of real-valued random variables. We say that X_{n} converges to X in distribution (or in law), and write $X_{n} \xrightarrow{d} X$, if for any $x \in \mathbb{R}$ where F_{X} is continuous, there holds

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)
$$

- If X is a continuous random variable, then F_{X} is everywhere continuous, and the above condition simply means that $F_{X_{n}}$ converges pointwise to F_{X}.
- If X is discrete, then F_{X} will be discontinuous at every point x such that $\mathbb{P}(X=x)>0$. The above definition says that, when checking whether X_{n} converges in distribution to X, we do not need to look at these points of discontinuities.
- That X_{n} converges in distribution to X means that $\mathbb{P}\left(X_{n} \leq x\right) \xrightarrow{n \rightarrow \infty} \mathbb{P}(X \leq x)$ for all points x where F_{X} does not jump. It is only a statement about the probability distributions of X_{n} and X. In particular, it does not say at all that X_{n} is close to X when n is large.

Proposition

(1) If X_{n} and X are square-integrable and

$$
\begin{equation*}
\mathbb{E}\left[\left|X_{n}-X\right|^{2}\right] \xrightarrow{n \rightarrow \infty} 0, \tag{1}
\end{equation*}
$$

then $X_{n} \xrightarrow{P} X$. The converse is false in general.
(2) If X_{n} converges to X in probability, then X_{n} also converges to X in law. The converse is false in general.
(3) If X is constant, i.e., there exists $a \in \mathbb{R}$ such that $X=a$ almost surely, then

$$
X_{n} \xrightarrow{P} X \quad \Leftrightarrow \quad X_{n} \xrightarrow{d} X .
$$

The convergence (1) is called "convergence in quadratic mean", and written $X n \xrightarrow{\text { q.m. }} X$. By the above proposition, convergence in quadratic mean is strictly stronger than convergence in probability, and convergence in probability is strictly stronger than convergence in distribution.

Proof. We only prove the first claim. Assume that $X_{n} \xrightarrow{\text { q.m. }} X$. Then for all $\varepsilon>0$,

$$
\mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right)=\mathbb{P}\left(\left|X_{n}-X\right|^{2}>\varepsilon^{2}\right) \leq \frac{\mathbb{E}\left[\left|X_{n}-X\right|^{2}\right]}{\varepsilon^{2}},
$$

where the last inequality is a consequence of Markov's inequality. By assumption, $\mathbb{E}\left[\left|X_{n}-X\right|^{2}\right] \xrightarrow{n \rightarrow \infty} 0$. Hence, by the above inequality, we get $\mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right) \xrightarrow{n \rightarrow \infty} 0$. This proves that $X_{n} \xrightarrow{P} X$. That the converse implication is false in general can be shown by counterexample (left as an exercise).

The Law of Large Numbers (LLN)

Before stating the LLN, we need a technical, but intuitive, lemma.

Lemma

Let X and Y be real-valued random variables which are equal in law. Then, for any real-valued map such that $f(X)$ is integrable, we have $\mathbb{E}[f(X)]=\mathbb{E}[f(Y)]$.

Proof. Let us prove the claim for discrete RVs (the continuous case is similar just by replacing PMFs with PDFs and sums by integrals). Let X and Y be discrete. Then $p_{X}=p_{Y}$, so for all integrable functions f, by the law of the unconscious statistician, there holds

$$
\mathbb{E}[f(X)]=\sum_{x \in E} p_{X}(x) f(x)=\sum_{y \in E} p_{Y}(y) f(y)=\mathbb{E}[f(Y)]
$$

The above result implies also that if X and Y are equal in law, then

$$
\mathbb{E}[X]=\mathbb{E}[Y], \quad \mathbb{E}\left[X^{2}\right]=\mathbb{E}\left[Y^{2}\right], \quad \operatorname{Var}(X)=\operatorname{Var}(Y)
$$

provided that these quantities are well-defined.

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. copies of a real-valued random variable X. By this we mean that $\left(X_{n}\right)_{n \geq 1}$ is a sequence of i.i.d. real-valued random variables having the same law as X. For all $n \geq 1$, let \bar{X}_{n} denote the sample mean of X_{1}, \ldots, X_{n} :

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

If X_{i} are integrable, then by linearity of the expected value, there holds

$$
\mathbb{E}\left[\bar{X}_{n}\right]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\mathbb{E}[X]
$$

Heuristically, we expect \bar{X}_{n} to converge to $\mathbb{E}[X]$ when $n \rightarrow \infty$. This is made precise by the following theorem.

Theorem (Weak Law of Large Numbers)

Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. copies of a real-valued random variable X. If X_{i} are integrable, then

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{P} \mathbb{E}[X]
$$

Proof. For simplicity, we provide a proof in the special case where the X_{n} are also square-integrable. Then

$$
\mathbb{E}\left[\left(\bar{X}_{n}-\mathbb{E}[X]\right)^{2}\right]=\mathbb{E}\left[\left(\bar{X}_{n}-\mathbb{E}\left[\bar{X}_{n}\right]\right)^{2}\right]=\operatorname{Var}\left(\bar{X}_{n}\right) .
$$

Now

$$
\operatorname{Var}\left(\bar{X}_{n}\right)=\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \frac{1}{n^{2}} \operatorname{Var}\left(X_{i}\right)
$$

where the second equality holds since the X_{i} are independent. Now, by the technical lemma we proved prior to this result, $\operatorname{Var}\left(X_{i}\right)=\operatorname{Var}(X)$ for all i, so we get

$$
\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\operatorname{Var}(X)}{n} \xrightarrow{n \rightarrow \infty} 0
$$

Hence $\mathbb{E}\left[\left(\bar{X}_{n}-\mathbb{E}[X]\right)^{2}\right] \xrightarrow{n \rightarrow \infty} 0$, therefore \bar{X}_{n} converges to $\mathbb{E}[X]$ in quadratic mean, and hence also in probability.

A stronger statement holds with the same assumptions.
Theorem (Strong Law of Large Numbers)
Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. copies of a real-valued random variable X. If X_{i} are integrable. If X_{i} are integrable, then

$$
\mathbb{P}\left(\left\{\omega \in \Omega \mid \bar{X}_{n}(\omega) \xrightarrow{n \rightarrow \infty} \mathbb{E}[X]\right\}\right)=1 .
$$

That is, $\bar{X}_{n} \rightarrow \mathbb{E}[X]$ almost surely.

Remark. The significance of the LLN is that it provides a concrete way of approximating the value of $\mathbb{E}[X]$ by sampling values of X a large number of times and taking the sample average.

Example

Let $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$ be independent for some $p \in(0,1)$. Then

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{P} \mathbb{E}\left[X_{1}\right]=p
$$

In other words, if we keep throwing a coin with parameter p a large number of times, the rate of success will converge in probability to p. If the coin is fair, i.e., $p=1 / 2$, then the rate of success approaches $1 / 2$ for n large.

Example

Let $X_{1}, \ldots, X_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ be independent for some $\mu \in \mathbb{R}$ and $\sigma>0$. Then

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{P} \mathbb{E}\left[X_{1}\right]=\mu
$$

The LLN implies that $\bar{X}_{n}=\mathbb{E}\left[X_{1}\right]+\varepsilon_{n}$, where ε_{n} is some remainder satisfying $\varepsilon_{n} \xrightarrow{P} 0$. The obvious question to consider is to ask, how fast does ε_{n} converge to 0 ?

The Central Limit Theorem

Let X_{1}, X_{2}, \ldots be a sequence i.i.d. real-valued random variables. We assume that the X_{i} are square-integrable and denote by μ and σ^{2} their mean and variance, respectively. Thus, for all i,

$$
\mathbb{E}\left[X_{i}\right]=\mu, \quad \operatorname{Var}\left(X_{i}\right)=\sigma^{2}
$$

As we saw in the previous section,

$$
\mathbb{E}\left[\bar{X}_{n}\right]=\mu, \quad \operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}
$$

We can perform an affine transformation on $\overline{X_{n}}$ in order to set its expectation and variance to 0 and 1 , respectively. This can be achieved as follows:
(1) We center it by subtracting its mean $\mathbb{E}\left[\bar{X}_{n}\right]$,
(2) We normalize it by dividing it by its standard deviation $\sqrt{\operatorname{Var}\left(\bar{X}_{n}\right)}$.

In other words, we set

$$
Y_{n}=\frac{1}{\sqrt{\operatorname{Var}\left(\bar{X}_{n}\right)}}\left(\bar{X}_{n}-\mathbb{E}\left[\bar{X}_{n}\right]\right)=\sqrt{\frac{n}{\sigma^{2}}}\left(\bar{X}_{n}-\mu\right)
$$

With this procedure, we obtain a random variable Y_{n} which is centered and normalized, i.e., which satisfies

$$
\mathbb{E}\left[Y_{n}\right]=0, \quad \operatorname{Var}\left(Y_{n}\right)=1
$$

The following theorem shows that, for n large, the distribution of Y_{n} is actually close to $\mathcal{N}(0,1)$.

Theorem (Central Limit Theorem)
Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. real-valued, square-integrable random variables with mean μ and variance σ^{2}. Then

$$
\sqrt{\frac{n}{\sigma^{2}}}\left(\bar{X}_{n}-\mu\right) \xrightarrow{d} \mathcal{N}(0,1)
$$

Remark. The CLT implies that, for all $a \in \mathbb{R}$,

$$
\mathbb{P}\left(\sqrt{\frac{n}{\sigma^{2}}}\left(\bar{X}_{n}-\mu\right) \leq a\right) \xrightarrow{n \rightarrow \infty} \int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2} x^{2}} \mathrm{~d} x .
$$

Remark. One may loosely formulate the CLT as saying that

$$
\sqrt{\frac{n}{\sigma^{2}}}\left(\bar{X}_{n}-\mu\right) \stackrel{d}{\approx} \mathcal{N}(0,1)
$$

for n large. In other words,

$$
\bar{X}_{n} \stackrel{d}{\approx} \mu+\sqrt{\frac{\sigma^{2}}{n}} Z,
$$

where $Z \sim \mathcal{N}(0,1)$. Thus, by the coloring transform,

$$
\bar{X}_{n} \stackrel{d}{\approx} \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$ from the LLN that

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{P} \mathbb{E}[X]=p .
$$

Since $\operatorname{Var}(X)=p(1-p)$, the CLT further implies that

$$
\sqrt{\frac{n}{p(1-p)}}\left(\bar{X}_{n}-p\right) \xrightarrow{d} \mathcal{N}(0,1),
$$

or, loosely speaking,

$$
\bar{X}_{n} \stackrel{d}{\approx} \mathcal{N}\left(p, \frac{p(1-p)}{n}\right) \quad \text { for } n \text { large. }
$$

By approximating \bar{X}_{n} using the Gaussian distribution, we can make inferences about the spread of \bar{X}_{n}. For example, if $p=\frac{1}{2}$ and $n=10^{4}$, we can use the Gaussian approximation to derive a confidence interval $\mathbb{P}\left(0.4902 \leq \bar{X}_{n} \leq 0.5098\right) \approx 0.95$. Note that the Gaussian approximation is valid only if n is large.

[^0]: ${ }^{\dagger}$ Recall that square-integrability implies that $\mathbb{E}\left[X^{2}\right]$ and $\mathbb{E}\left[Y^{2}\right]$ are well-defined and finite.

