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Statistical testing
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Statistical research is collecting, organizing, analyzing, and interpreting
data.

Statistical models are mathematical and are based on probability theory.

In probability theory, if we know the law of a random variable, then
we are easily able to draw an i.i.d. sample from the distribution,
compute the probabilities of different events, compute the expected
value, variance, higher moments, etc.

In statistics, we are usually given a finite sample, and we are
interested in making inferences about the distribution and population
parameters such as the expected value, variance, higher moments,
etc. We are also interested in assessing the uncertainty of the
population parameters (confidence interval).

– If the data (approximately) follows a distribution which we are able to
identify, we can make use of the properties of that distribution from
probability theory to assess the uncertainty (parametric tests).

– It is also important to discuss statistical methods for data which does
not clearly follow a known distribution (non-parametric tests).

Correlations between variables, regression models, . . .
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Population and sample

In statistical analysis, a population is a collection of all the people,
items or events about which one wants to make inferences. (For
example, university students in Germany.)

In statistical analysis, a sample is a subset of the population (i.e., the
people, items or events) that one collects and analyzes to make
inferences. (For example, 200 randomly chosen university students.)

In statistical analysis, an observation is an element of the sample.
(For example Helen, a student at FU Berlin.)
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In statistical research, data consists of the values of selected variables that
describe the observations. The data points (the values of the selected
variables) can also be called observations.

Examples:

temperature, height, blood pressure (continuous quantitative
variables)

gender, eye color (categorical qualitative variables)

clothing size (s,m,l) (ordinal quantitative variable)
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Statistical research projects

Statistical research projects can usually be conducted in the following
steps:

1 Setting of the research topic and the relevant research questions.
Research questions should be defined precisely.

2 Defining of the population and interesting variables.
3 Planning of the sample collection. Collected sample must represent

the population!
4 Collection of the sample.
5 Organization of the sample.
6 Description of the variables and the sample, descriptive statistics and

visualization.
7 Inference based on statistical analysis. Model assumptions have to be

tested separately!
8 Critical evaluation of the analysis. Possible errors and weaknesses

have to be reported.
9 Communication of the research and findings.
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Different statistical studies

Statistical research projects can be conducted in several different ways.
Research questions, population, goals, and resources all have an effect on
the choice of the methods.

In observational research, observations are made without changing
any existing conditions. For example, temperature is measured or the
lung cancer risk of smokers is compared to the lung cancer risk on
non-smokers.

In controlled experiments, the effect of one variable to another is
examined by controlling existing conditions. For example, the effect of
allergy medicine is compared to the effect of placebo by randomizing
patients to two groups.
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Different statistical studies

In simulations, mathematical modeling is used to mimic natural
conditions or processes. For example, the spread of the Ebola virus is
predicted by applying computer simulations or the safety of a new car
model is tested using crash test dummies.

In surveys, the goal is to find a representative sample of the
population and get answers to some particular questions. For
example, opinion polls are used in order to predict election results, or
health related questionnaires are used to assess the health of
university students.
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Descriptive statistics
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Descriptive statistics and inference

Descriptive statistics provide a concise summary of the data. The
summary may either be numerical or graphical or both. Descriptive
statistics may consist of, for example, numerical tables, average values,
deviations, summaries and visualizations.

Statistical inference draws conclusions about the population using data.
Statistical inference is based on mathematical modeling and probabilities.
Inferential statistical analysis includes, for example, estimation and
statistical testing.
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Visualization

Discrete variable: bar plot, pie chart

Continuous variable: box plot, histogram

Bivariate: scatter plot
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Pie chart
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Histogram
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Box plot
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Box plot

In a box plot (sometimes also called a “box-and-whisker plot”), the box
contains 50% of the data. The line in the middle is the sample median.

Let Q1 and Q3 denote the 25 and 75 sample percentiles. By default, the
lower whisker is at the lowest data point above Q1 − 1.5(Q3 −Q1) and the
upper whisker is at the highest data point below Q3 + 1.5(Q3 − Q1).

Outlying points are marked using circles.
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Scatter plot
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Location

Mean, median, and mode are commonly used measures of location.

Let x1, . . . , xn be i.i.d. observations of a random variable x . Then the
sample mean

x = xn =
1

n

n∑
i=1

xi

estimates the expected value E[x ] = µ of the variable x .

The population median mx of a random variable x is the value with the
property

P(x < mx) ≤
1

2
and P(x ≤ mx) ≥

1

2
.

Let y1 < y2 < · · · < yn be the ordered values of the data. The sample
median is the middle value of the ordered values. If the number of
observations is even, then the sample median is the average of the two
middle elements. The sample median estimates the population median.

The sample mode is the value x1, . . . , xn that has the highest frequency.
Mode estimates a value of a qualitative variable or discrete quantitative
variable that has the highest probability.
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Percentiles

Let x1, . . . , xn be i.i.d. observations of a random variable x . Let
y1 < y2 < · · · < yn be the ordered values of the data. Then the sample β
percentile, 0 < β < 100, is the data point yk , where k is the closest
integer that is larger than or equal to β · (n/100). The population β
percentile of a random variable x is the value βx with the property

P(x < βx) ≤
β

100
and P(x ≤ βx) ≥

β

100
.
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Numerical example

Consider the sample
{3, 1, 2, 3, 7, 8, 3, 4, 4, 6}.

The sample mean is

x =
1

10
· (3 + 1 + 2 + 3 + 7 + 8 + 3 + 4 + 4 + 6) =

41

10
= 4.1.

The sample median is

m̂x =
3 + 4

2
=

7

2
= 3.5.

The sample mode is 3.
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Deviation/scatter

Variance, standard deviation, median absolute deviation (MAD), and
range are commonly used measures of deviation/scatter.

Let x1, . . . , xn be i.i.d. observations of a random variable x . The sample
variance

s2 = s2n =
1

n − 1

n∑
i=1

(xi − x)2

estimates the population variance E[(x − E[x ])2] = σ2.

The sample standard deviation is the square root of the sample variance:

s = sn =
√

s2n .
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Chebyshev’s inequality

Let x be a random variable with finite expected value E[x ] = µ and finite
variance E[(x − E[x ])2] = σ2. Let k > 1. Then

P(|x − µ| ≥ kσ) ≤ 1

k2
.

If k = 2, then 1− 1
k2 = 75%.

If k = 3, then 1− 1
k3 ≈ 88.9%.

In practice, the expected value and variance must be estimated.
Chebyshev’s inequality can be used to evaluate the outlyingness/rareness
of a single observation:

If an observation lies further away than two times the standard
deviation of the sample mean, it is considered rare.

If an observation lies further away than three times the standard
deviation of the sample mean, it is considered very rare.

These definitions are based on Chebyshev’s inequality.
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Rare observation under normality

If it is known that observations follow a Gaussian distribution, then the
probability for a data point lying within one standard deviation of the
sample mean is ≈ 68%. The probability for a data point lying within two
standard deviations of the sample mean is ≈ 95% and for three standard
deviations it is ≈ 99.7%.
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Median absolute deviation and range

Let x1, . . . , xn be i.i.d. observations of a random variable x and let mx be
the sample median. Then the median absolute deviation (MAD) is the
median of the sample |x1 −mx |, |x2 −mx |,. . . ,|xn −mx |.†

Let Maxx be the largest data point and Minx the smallest data point.
Then the sample range is the interval [Minx ,Maxx ] and the length of the
range is Maxx −Minx .

†To make the MAD comparable with the standard deviation, one often multiplies the
MAD with a scale factor k depending on the distribution. For example, for normally
distributed data, k = 1

Φ−1(3/4)
≈ 1.4826. (In fact, this is the default scaling used in R,

but for example the scipy.stats.median abs deviation function uses k = 1 by
default.)
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Numerical example

Consider the sample
{3, 1, 2, 3, 7, 8, 3, 4, 4, 6}.

The sample mean was calculated above and it was 4.1. The sample
variance is

s2n =
1

n − 1

n∑
i=1

(xi − x)2 =
1

9

10∑
i=1

(xi − 4.1)2 = 4.9888 . . .

and the sample standard deviation is sn =
√
s2n =

√
4.9888 . . . = 2.233 . . .

The sample median was calculated above and it was 3.5. Mean absolute
deviation:

MAD = median{|3− 3.5|, |1− 3.5|, |2− 3.5|, |3− 3.5|, |7− 3.5|,
|8− 3.5|, |3− 3.5|, |4− 3.5|, |4− 3.5|, |6− 3.5|}

= 1.

The range can be calculated from the minimum and maximum values of
the sample:

[min(x),max(x)] = [1, 8].

The length of the range is 8− 1 = 7. 174



Skewness

Let x1, . . . , xn be i.i.d. observations of a random variable x . Then the
sample skewness coefficient is

v =
m3

s3n
,

where

m3 =
1

n

n∑
i=1

(xi − x)3.

Sample skewness coefficient estimates the population value

E
[(

x − µ

σ

)3]

 (5,1)

χ2 (3)
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Skewness

If the skewness coefficient v > 0, then the distribution is skewed to
the right (positively skewed distribution).

If the skewness coefficient v < 0, then the distribution is skewed to
the left (negatively skewed distribution).

Usually†, a positively (right) skewed distribution has a long right tail and
the mass of the distribution is concentrated on the left. A negatively (left)
skewed distribution has a long left tail and the mass of the distribution is
concentrated on the right.
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†Multimodal distributions or asymmetric distributions which have one long tail but
the other tail is fat can break this rule of thumb.
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Skewness

Alternative skewness coefficient v2: Let x1, . . . , xn be i.i.d. observations of
a random variable x . Then also

v2 =
x −mx

sn

is a measure of skewness. (Here, mx denotes the sample median.)

For symmetric distributions, the sample mean and sample median estimate
the same population value.
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Kurtosis

Let x1, . . . , xn be i.i.d. observations of a random variable x . Then the
sample kurtosis coefficient is

k =
m4

s4n
− 3,

where

m4 =
1

n

n∑
i=1

(xi − x)4.

The sample kurtosis coefficient estimates the population value

E
[(

x − µ

σ

)4

− 3

]
.
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Kurtosis

A random variable with normal distribution has kurtosis value 0. If the
kurtosis value is k > 0, then the distribution is more peaked than normal
distribution. If k < 0, then the distribution is less peaked than normal
distribution.

A distribution with large kurtosis value (leptokurtic) typically has a sharp
peak and thick tails, while less peaked distributions (platykurtic) have
round peaks and thin tails.
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Linear dependence and correlation

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y). Then the sample covariance

sxy =
1

n − 1

n∑
i=1

(xi − x)(yi − y)

estimates the population covariance E[(x − E[x ])(y − E[y ])] = σxy , and

ρ̂(x , y) =
sxy
sxsy

=

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2

estimates the Pearson correlation coefficient

ρ(x , y) =
σxy
σxσy

.

The Pearson correlation coefficient measures numerically the linear
dependence of two random variables. The coefficient is always in the
interval [−1, 1].

180



Confidence interval
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Confidence interval

In statistics, we often have a sample and we estimate the value of some
parameter using the observations. For example, we estimate the expected
value by calculating the sample mean or we estimate the population
skewness coefficient by calculating the corresponding sample estimate.
The simple estimate, however, still gives us quite little information. We
cannot directly evaluate how good our estimate is. It would be nice to
know a bit more. That is why an estimate of a parameter is often
presented with a corresponding confidence interval.
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Confidence interval

A confidence interval gives an estimated range of values which is likely to
include an unknown population parameter, the estimated range being
calculated from a given set of sample data. A confidence level for a
confidence interval determines the probability that the confidence interval
produced will contain the true parameter value.
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Confidence interval

Let x be a random variable from a distribution Px . Let θ be a parameter
of the distribution Px and let θ̂ be an estimate of the parameter. (For
example, θ could be the population mean, population standard deviation,
population median, etc., and θ̂ would be the corresponding sample mean,
sample standard deviation, sample median, etc.)

We say that an interval (l , u) is a confidence interval for the estimate θ̂ at
confidence level (1− α) if the following holds: before the sample is
generated, the random range (l , u) corresponding to θ̂ includes the true
parameter value θ with probability p = 1− α.

After the sample has been generated and the estimate θ̂ and the
corresponding confidence interval (l , u) has been calculated, the
confidence interval either includes or does not include the true parameter
value θ. If 100 samples are generated, the corresponding 100 estimates θ̂
and the corresponding 100 confidence intervals are calculated, then
≈ (1− α) · 100 of the confidence intervals include the true parameter
value and ≈ α · 100 do not include it.
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Bootstrap confidence intervals

Let {x1, . . . , xn} denote i.i.d. observations from the distribution Px . Let θ
be a parameter of the distribution Px . (For example, θ could be the
population mean, population standard deviation, population median, etc.)
Let θ̂ be an estimate of the parameter θ calculated from the sample
{x1, . . . , xn}. (For example, θ̂ would be the sample mean, sample standard
deviation, sample median, etc., corresponding to θ.)

An estimate for the confidence interval (l , u) can now be obtained by
resampling as follows:

1. Select n data points randomly with replacement from the original
sample x1, . . . , xn. Each data point can be selected once, multiple
times, or not at all. (Note that the sample size of the new sample is
the same as the sample size of the original sample.)

2. Calculate a new estimate for the parameter θ from the new sample
formed in the previous step.

(Continued on the next slide.)
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3. Repeat the steps 1–2 k times and order the obtained estimates from
the smallest to the largest. Include also the original estimate θ̂.

4. Calculate an estimate for a (1− α) · 100% confidence interval by
selecting a lower bound l that is smaller than (or equal to)
(1− α

2 ) · 100% of the ordered estimates and an upper bound u that is
larger than (or equal to) (1− α

2 ) · 100% of the estimates.

Example

Assume that we compute 999 bootstrap estimates. Then, in total, there
are 1000 estimates – the original one and the 999 new ones. Now, an
estimated 90% confidence interval (l , u) is obtained by choosing the 50th

ordered estimate as l and the 951st estimate as u.

An estimate for the 95% confidence interval (l , u) is obtained by choosing
the 25th estimate as l and the 976th estimate as u.

On the accuracy of the bootstrap confidence interval:

The larger the original sample size, the better the confidence interval.

The larger the number k of bootstrap samples, the better the
confidence interval.
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Exact confidence intervals

Bootstrap confidence intervals are nowadays easy to calculate and they
have the advantage of being distribution free.

However, when the type of distribution is known, also exact confidence
intervals can be calculated. It is possible to obtain exact confidence
intervals for the parameters of the normal distribution or for the parameter
of the Bernoulli distribution, for example.
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Confidence interval, normal distribution

A random variable with normal distribution has a probability density
function (PDF) of the form

f (x) =
1√
2πσ2

exp

(
− 1

2σ2
(x − µ)2

)
.

The normal distribution has two parameters: the mean µ and the variance
σ2.
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Example (Confidence interval for population mean µ of a normal
i.i.d. sample with known variance σ2)
Let x1, . . . , xn be i.i.d. copies of x ∼ N (µ, σ2). Suppose that we are
interested in finding a level (1− α) confidence interval for the population
mean µ given the sample x1, . . . , xn. If we know the population variance
σ2, then we can use the whitening transform

Z =
xn − µ

σ/
√
n

∼ N (0, 1) (1)

and deduce that the (1− α) confidence interval for the population mean is
given by (

xn − zα/2
σ√
n
, xn + zα/2

σ√
n

)
, (2)

where zα/2 = Φ−1(1− α
2 ) is the (1− α/2) · 100 percentile of the standard

normal distribution. E.g., if α = 0.05, then z0.025 = Φ−1(0.975) ≈ 1.96.

In practice, the population standard derivation must be approximated by
the sample standard deviation sn. If n is large (e.g., n > 30), then simply
approximating σ ≈ sn in (1)–(2) may lead to a reasonable approximation
of the CI. However, simply replacing σ by sn makes the test statistic (1)
non-Gaussian in general. A better method is to note that xn−µ

sn/
√
n
follows

Student’s t-distribution. 189



Confidence interval, mean of normal distribution

Let x1, . . . , xn be i.i.d. copies of x ∼ N (µ, σ2). We are interested in
finding a level (1− α) confidence interval for the population mean µ given
the sample x1, . . . , xn. In practice, the population standard deviation σ
must be approximated by the sample standard deviation sn. Substituting
the population standard deviation σ by the sample standard deviation sn
in (1) yields the t-statistic

tn−1 :=
xn − µ

sn/
√
n

and we say that tn−1 has Student’s t-distribution with n − 1 degrees of
freedom. Then the (1− α) confidence interval for the population mean µ
is given by (

xn − tn−1,α/2
sn√
n
, xn + tn−1,α/2

sn√
n

)
,

where tn−1,α/2 is the (1− α/2) · 100 percentile of the tn−1 distribution.

E.g., if n = 10 and α = 0.05, then t9,0.025 = F−1
t9 (0.975) = 2.262, where

F−1
t9 is the quantile function of t9.
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Figure: Student’s t-distributions with different degrees of freedom. The
t-distribution has heavier tails than the standard Gaussian distribution. As the
degrees of freedom increase, the t-distributions tend to the standard Gaussian
distribution.
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Confidence interval, variance of normal distribution

Let x1, . . . , xn be i.i.d. copies of x ∼ N (µ, σ2). We are interested in
finding a level (1− α) confidence interval for the population variance given
the sample x1, . . . , xn. It is assumed that the population mean µ is also
unknown. The statistic

Q =
(n − 1)s2n

σ2
=

1

σ2

n∑
i=1

(xi − xn)
2

has the χ2 distribution with n− 1 degrees of freedom, i.e., Q ∼ χ2(n− 1).
Then the level (1− α) confidence interval for the variance of a normal
distribution can be given as(

(n − 1)s2n
χ2
n−1,α/2

,
(n − 1)s2n
χ2
n−1,1−α/2

)
,

where χ2
n−1,α/2 is the (1− α/2) · 100 percentile of the χ2(n − 1)

distribution. Similarly, χ2
n−1,1−α/2 is the (α/2) · 100 percentile of the

χ2(n − 1) distribution. E.g., if n = 10 and α = 0.05, then
χ2
9,0.025 = F−1

χ2(9)
(0.975) ≈ 19.02 and χ2

9,0.975 = F−1
χ2(9)

(0.025) ≈ 2.70.
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χ2 distribution
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Figure: χ2 distribution with different degrees of freedom.
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Confidence interval, parameter p of Bernoulli distribution

Let {x1, . . . , xn} denote i.i.d. observations of a random variable x . Assume
that P(xi = 1) = p and P(xi = 0) = 1− p. Then x ∼ Ber(p), with
expected value E[x ] = p and E[(x − E[x ])2] = p(1− p). An unbiased
estimate of the expected the expected value p is the sample mean

p̂ =
1

n

n∑
i=1

xi .

If n is large, the level (1− α) confidence interval for the mean p of the
Bernoulli distribution can be given as(

p̂ − zα/2

√
p̂(1− p̂)√

n
, p̂ + zα/2

√
p̂(1− p̂)√

n

)
,

where zα/2 is the (1− α/2) · 100 percentile of the standard normal
distribution N (0, 1).

There exist several alternative estimates for the confidence interval for the
mean of the Bernoulli distribution. If the sample size is small, one can try
the Wilson score interval, for example.
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Numerical example, confidence intervals

The masses of Brand X cookie packages are approximately normally
distributed with expected value µ. The randomly chosen packages were
weighted and the following data (measured in grams) was obtained: 397.3,
399.6, 401.0, 392.9, 396.8, 400.0, 397.6, 392.1, 400.8, 400.6.

The mean of the masses is 397.87g and the sample standard deviation is

s =

√√√√ 1

10− 1

10∑
i=1

(xi − 397.87)2 ≈ 3.2128.

As we saw above, the 97.5% percentile of the Student’s t-distribution with
10− 1 = 9 degrees of freedom is t = 2.262. The 95% confidence interval
for the mean masses of the cookie packages is(

x ± t
s√
n

)
= (397.87g ± 2.262 · 3.2128g√

10

)
= (395.6g , 400.3g).
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