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Hypothesis testing

Statistical tests are applied extensively in various fields of science. We
might want to test, for example:

If one concrete type is stronger than another (competing) concrete
type.

If there a difference in the average salaries of men and women across
the population.

Whether or not a new medicine lowers systolic blood pressure.
...
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Hypothesis testing

A statistical hypothesis is a hypothesis that is tested using probabilities.
Statistical testing is based on setting general statistical assumptions, a null
hypothesis and an alternative hypothesis, and on selecting a suitable test
statistic. The value of the selected test statistic is calculated from a
sample of observations.
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Assumptions

General statistical assumptions include assumptions about the
population, sampling method, and about the distribution of the
observations.

Statistical assumptions hold throughout the testing process.

Statistical assumptions may, and should, be tested separately.
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Null hypothesis

The statement about a population parameter that is being tested is
called the null hypothesis H0.

The null hypothesis is assumed to be true, unless there is strong
evidence that indicates otherwise.

If strong evidence against the null hypothesis is found, then it is
rejected.

In simple statistical tests, the null hypothesis can often be stated as

H0 : θ = θ0,

where θ is the parameter being tested and θ0 is a fixed value of the
parameter.

The null hypothesis is often of the form “is the same” or “no
difference”.
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Alternative hypothesis

If the null hypothesis H0 is rejected, then the alternative hypothesis
H1 is accepted.

If the alternative hypothesis can be stated as H1 : θ > θ0 or
H1 : θ < θ0, then it is called a one tailed alternative hypothesis.

If the alternative hypothesis can be stated as H1 : θ ̸= θ0, then it is
called a two tailed alternative hypothesis.

The alternative hypothesis is often of the form “not the same” or
“different”.

It is not always easy to decide whether one tailed or two tailed alternative
hypothesis should be used.

Do not fish for favorable results by using one tailed alternative hypothesis!

The use of one tailed alternative hypothesis must be justified by the
context.
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Test statistic

A test statistic compares the observations and the null hypothesis H0.

A test statistic is a random variable and its value depends on the
observations.

A test statistic is used in evaluating the probability of getting the
observed value of the statistic, under the assumption that the null
hypothesis H0 is true.

The distribution of the test statistic under the null hypothesis H0 must
be known for comparing the observations and the null hypothesis H0.
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Critical value

The expected value of a chosen test statistic is calculated under the
null hypothesis H0.

If the observed value of the test statistic is close to the expected
value, no strong argument against the null hypothesis H0 is found.

If the observed value of the test statistic is far away from the
expected value, then evidence against the null hypothesis H0 is found.

The set of values of the test statistic for which the null hypothesis is
rejected (i.e., the set of the values that are far away from the
expected value) is called the critical region.

The threshold values defining the critical region are called the critical
values.
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p-value

The p-value of a statistical test is the probability, assuming that the null
hypothesis H0 is true, of observing at least as extreme value as the
observed value of the test statistic.

Rejecting or not rejecting the null hypothesis H0 is based on the p-value.
Statistical software can be used to calculate the p-value.

The significance level α of a test statistic is the smallest p-value that is
accepted without rejecting the null hypothesis H0. It is possible to use
pre-selected significance levels and the corresponding critical regions.
Commonly used significance levels α are 0.05, 0.1, 0.01, and 0.001.

If the significance level is α = 0.05 and the p-value of the test statistic is
< 0.05

’
then the null hypothesis H0 is rejected.
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p-value

The p-value of a test statistic is calculated as follows:

1 Calculate the value of the test statistic using the observations.

2 Assuming that the null hypothesis H0 is true and based on the known
distribution of the test statistic, calculate the probability of the value
of the test statistic being as extreme, or more extreme, as it is.

The null hypothesis H0 can be rejected, if the p-value is small enough.
The smaller the p-value, the stronger the evidence against H0.
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Errors

There are two types of errors related to the rejection of the null hypothesis
H0:

Type 1 error: True null hypothesis is rejected.
Type 2 error: False null hypothesis is not rejected.

The type 1 error rate is the probability of rejecting the null hypothesis
given that it is true. Thus type 1 error rate is equal to the significance
level α.

The type 2 error rate is the probability of not rejecting the null hypothesis
given that it is false. Type 2 error rate is in general a function of the
possible distributions, often determined by a parameter, under the
alternative hypothesis. The power of a test statistic is equal to
1− (type 2 error rate). Thus, the power of a test statistic is also a
function of the possible distributions. As the power increases, the chance
of a type 2 error decreases – one is more likely to detect significant
differences when they truly exist.

In statistical testing, type 1 errors are generally considered worse than type
2 errors. That is why the significance level α is usually selected to be small.
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p-value, one tailed and two tailed alternative hypothesis

Let z be the value of a test statistic Z calculated from the observations.

If the one tailed alternative hypothesis is given as H1 : θ > θ0, then the
p-value of the test is

p = P(Z ≥ z | H0).

If the one tailed alternative hypothesis is given as H1 : θ < θ0, then the
p-value of the test is

p = P(Z ≤ z | H0).

If the alternative hypothesis is two tailed, H1 : θ ̸= θ0, then the p-value of
the test is

p = 2min(P(Z ≤ z | H0),P(Z ≥ z | H0)).
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Steps of statistical hypothesis testing

1 State the hypotheses and general assumptions.

2 Select a test statistic.

3 Pick a sample such that the general assumptions hold.

4 Calculate the value of the test statistic using the sample.

5 Calculate the p-value corresponding to the observed value of the test
statistic.

6 Draw conclusions and reject/do not reject the null hypothesis.
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t-tests
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One sample t-test

The one sample t-test compares the expected value of a random variable
to a given constant.

Let x1, . . . , xn be i.i.d. observations of a random variable x . Assume that
the observed values come from the normal distribution N (µ, σ2).

The null hypothesis: H0 : µ = µ0.

The possible alternative hypotheses:

H1 : µ > µ0 (one tailed),

H1 : µ < µ0 (one tailed),

H1 : µ ̸= µ0 (two tailed).
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One sample t-test

The t-test statistic is

t =
x − µ0

sn/
√
n
.

If the null hypothesis H0 is true, then the test statistic follows
Student’s t-distribution with n − 1 degrees of freedom.

The expected value of the test statistic under the null hypothesis H0

is 0, i.e., E[t] = 0.

If the value of the test statistic is large/small, evidence against the
null hypothesis H0 is found. On the other hand, the null hypothesis
H0 is rejected if the p-value is small enough.

Python:
t stat,p value = scipy.stats.ttest 1samp(a=x,popmean=µ0)
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One sample t-test, normality assumption

When the one-sample t-test is used, it is assumed that the
observations follow the normal distribution.

If the sample size is large, then one sample t-test is not very sensitive
to moderate deviations from normality.

Even without normality, the one sample t-test is quite reliable if the
sample size n > 25. That is, unless the distribution is very skewed.

With sample size n > 40, the one sample t-test is quite reliable even
for clearly skewed distributions.
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One sample t-test – implementation in Python

import numpy as np

from scipy.stats import t as tdist

def tTest_1sample(x,mu0,alternative=’two-sided’):

n = len(x)

xbar = np.mean(x)

std = np.std(x,ddof=1) # Use Bessel’s correction

t_stat = (xbar-mu0)/(std/np.sqrt(n))

q = tdist.cdf(t_stat,n-1)

if alternative == ’less’:

return t_stat,q

elif alternative == ’greater’:

return t_stat,1-q

else:

return t_stat,2*min(q,1-q)
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Numerical example, one sample t-test

According to the package text, Brand X cookies have 12 chocolate chops
in each cookie. The number of chocolate chips of ten randomly selected
cookies were calculated and the following data was obtained:

{12, 11, 10, 13, 14, 12, 11, 12, 12, 12}.

We want to test, on significance level 5%, the hypothesis that the
expected value of the number of chocolate chops in Brand X cookies is 12.
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The sample mean of the chocolate chips is 11.9 and the sample standard
deviation is 1.1005. One sample t-test is used and the value of the test
statistic is

t =
x − µ0

s/
√
n

=
11.9− 12

1.1005/
√
10

= −0.287.

Assuming normality and i.i.d. observations, under the null hypothesis
(µ = µ0 = 12), the test statistic follows Student’s t-distribution with 9
degrees of freedom.

With significance level 5% and 9 degrees of freedom, the critical values of
the test statistic are ±2.262. Since the observed value of the test statistic
−0.287 > −2.262 and −0.287 < 2.262, the null hypothesis is not rejeced.

The p-value is often observed directly without setting any pre-selected
significance level. Probabilities P(T ≤ t|H0) and P(T ≥ t|H0) are 0.6098
and 0.3902, respectively. Then the p-value is

p = 2min(P(Z ≤ z | H0),P(Z ≥ z | H0)) = 2 · 0.3902 = 0.7804.

The p-value is large and no evidence against the null hypothesis is found.
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What went wrong in the previous example? What are the general
statistical assumptions when one sample t-test is used?
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Two sample t-test

The two sample t-test compares the expected values of two independent
variables. We first consider the case when the variances are not assumed
to be equal.
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Two sample t-test, assumptions

Let x1, . . . , xn be the observed values of a random variable x and let
y1, . . . , ym be the observed values of a random variable y . Assume that
the observed values x1, . . . , xn are i.i.d. and come from the normal
distribution N (µx , σ

2
x) and assume that the observed values y1, . . . , ym are

i.i.d. and come from the normal distribution N (µy , σ
2
y ). Furthermore,

assume that xi and yj are independent for all i , j .

The null hypothesis: H0 : µx = µy .

The possible alternative hypotheses:

H1 : µx > µy one tailed,

H1 : µx < µy one tailed,

H1 : µx ̸= µy two tailed.
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Two sample t-test

The t-test statistic

t =
x − y√

s2x /n + s2y /m
.

If the null hypothesis H0 is true, then the test statistic follows
Student’s t-distribution with v degrees of freedom, where

v =
(s2x /n + s2y /m)2

((s2x /n)
2/(n − 1)) + ((s2y /m)2/(m − 1))

.

The expected value of the test statistic under the null hypothesis H0

is 0 (E[t] = 0).

If the value of the test statistic is large/small, evidence against the
null hypothesis H0 is found.

The null hypothesis H0 is rejected if the p-value is small enough.

Python:
t stat,p value =

scipy.stats.ttest ind(a=x,b=y,equal var=False)
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Two sample t-test – implementation Python

import numpy as np

from scipy.stats import t as tdist

def tTest_2sample(x,y,alternative=’two-sided’):

n = len(x); m = len(y)

xbar = np.mean(x); ybar = np.mean(y)

stdx = np.std(x,ddof=1); stdy = np.std(y,ddof=1)

t_stat = (xbar-ybar)/np.sqrt(stdx**2/n+stdy**2/m)

v = (stdx**2/n+stdy**2/m)**2 \

/((stdx**2/n)**2/(n-1)+((stdy**2/m)**2/(m-1)))

q = tdist.cdf(t_stat,v)

if alternative == ’less’:

return t_stat,q

elif alternative == ’greater’:

return t_stat,1-q

else:

return t_stat,2*min(q,1-q)
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Two sample t-test, normality assumption

When the two sample t-test is used, it is assumed that the
observations follow the normal distribution.

If the sample sizes are large, then the two sample t-test is not very
sensitive to moderate deviations from normality.

Even without normality, the two sample t-test is quite reliable, if the
sample sizes n > 25 and m > 25. That is, unless the distributions are
very skewed.

If n > 40 and m > 40, then the test can be quite safely used even
with clearly skewed distributions.

218



Two sample t-test, equal variances

The two sample t-test has a bit simpler form if the variances are assumed
to be equal.

Assumptions and hypotheses are the same as in the general two sample
t-test, but the variances of the distributions are assumed to be equal –
that is, it is assumed that σ2

x = σ2
y .
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Two sample t-test, equal variances

The t-test statistic

t =
x − y

sp
√

1/n + 1/m
,

where

s2p =
(n − 1)s2x + (m − 1)s2y

n +m − 2
.

If the null hypothesis H0 is true, then the test statistic follows
Student’s t-distribution with n +m − 2 degrees of freedom.
The expected value of the test statistic under the null hypothesis H0

is 0 (E[t] = 0).
If the value of the test statistic is large/small, evidence against the
null hypothesis H0 is found.
The null hypothesis H0 is rejected if the p-value is small enough.
Normality assumption can be relaxed as in the general two sample
t-test.
Python:
t stat,p value =

scipy.stats.ttest ind(a=x,b=y,equal var=True)
220



Paired t-test

General two sample t-tests can be applied when the two samples are
independent.

The paired t-test can be used to compare two measuring equipments by
using both equipments to measure the same subject in the same
circumstances. (Do two pedometers give the same result?) A paired t-test
can be used for example to study if a treatment works by measuring the
same subjects before and after the treatment. (Does drinking have an
effect on reaction time? Does malnutrition have an effect on memory?)
The aim can also be to compare two populations by measuring the same
variables of fitted pairs. (Do the voting preferences of couples living
together differ from each other?)
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Paired t-test

Paired t-test:

Observations (xi ,1, xi ,2), i = 1, . . . , n, consist of measured pairs of a
random variable x .

The pairs are assumed to be independent. However, the two values
inside one pair are not assumed to be independent.

General two sample t-tests should not be used for paired observations.

Calculate the differences di = xi ,1 − xi ,2, i = 1, . . . , n, of the
measurements xi ,1 and xi ,2.

Measurements xi ,1 and xi ,2 have on average about the same value if
the differences are on average about 0.

It is now possible to apply the standard one sample t-test to the
differences di .

Python:
t stat,p value = scipy.stats.ttest rel(a=x,b=y)
Remark: scipy.stats.ttest rel assumes µ0 = 0 by default.
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Paired t-test

General statistical assumptions: differences di are i.i.d. and come
from the normal distribution.
The null hypothesis: H0 : µd = 0.
Possible alternative hypotheses: H1 : µd > 0 (one tailed), H1 : µd < 0
(one tailed) or H1 : µd ̸= 0 (two tailed).
The t-test statistic

t =
d

sd/
√
n
.

If the null hypothesis H0 is true, then the test statistic follows
Student’s t-distribution with n − 1 degrees of freedom.
The expected value of the test statistic under the null hypothesis H0

is 0 (E[t] = 0).
If the value of the test statistic is large/small, evidence against the
null hypothesis H0 is found.
The null hypothesis H0 is rejected if the p-value is small enough.
The normality assumption can be relaxed as in the general one sample
t-test.
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Paired t-test – implementation in Python

def tTest paired(x,y,alternative=’two-sided’):

return tTest 1sample(x-y,0,alternative)
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Variance tests
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Variance test, assumptions

Let x1, . . . , xn be observed values of a random variable x . Assume that the
observed values are i.i.d. and come from the normal distribution N (µ, σ2).

The null hypothesis: H0 : σ
2 = σ2

0.

The possible alternative hypotheses:

H1 : σ
2 > σ2

0 (one tailed),

H1 : σ
2 < σ2

0 (one tailed),

H1 : σ
2 ̸= σ2

0 (two tailed).
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Variance test

The χ2 test statistic

χ2 =
(n − 1)s2

σ2
0

.

If the null hypothesis is true, then the test statistic follows the χ2

distribution with n − 1 degrees of freedom.

The expected value of the test statistic is n − 1.

Large and small values of the test statistic (compared to the expected
value n − 1) suggest that the null hypothesis H0 is false.

The null hypothesis is rejected if the p-value is small enough.

This test is sensitive to deviations from normality! Variance test does
not work, not even with large sample sizes, if the distribution of the
observations is skewed.
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Variance test – implementation in Python

import numpy as np

from scipy.stats import chi2

def varTest(x,sigma_squared,alternative=’two-sided’):

n = len(x)

Q_stat = (n-1) * np.var(x,ddof=1)/sigma_squared

q = chi2.cdf(Q_stat,n-1)

if alternative == ’less’:

return Q_stat,q # one-sided variance test

elif alternative == ’greater’:

return Q_stat,1-q # one-sided variance test

else:

return Q_stat,2*min(q,1-q) # two-sided variance test
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Variance comparison test, assumptions

Let x1, . . . , xn be observed values of a random variable x and let
y1, . . . , ym be observed values of a random variable y . Assume that the
observations x1, . . . , xn are i.i.d. and follow the normal distribution
N (µx , σ

2
x) and assume that y1, . . . , ym are i.i.d. and follow the normal

distribution N (µy , σ
2
y ). Furthermore, assume also that xi and yj are

independent for all i , j .

The null hypothesis: H0 : σ
2
x = σ2

y .

The possible alternative hypotheses:

H1 : σ
2
x > σ2

y (one tailed),

H1 : σ
2
x < σ2

y (one tailed),

H1 : σ
2
x ̸= σ2

y (two tailed).
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Variance comparison test

The F -test statistic

F =
s2x
s2y

.

If the null hypothesis is true, then the test statistic follows
F -distribution with n − 1 and m − 1 degrees of freedom.

The expected value of the test statistic is ≈ 1.

Large and small values of the test statistic (compared to the expected
value ≈ 1) suggest that the null hypothesis H0 is false.

The null hypothesis H0 is rejected if the p-value is small enough.

This test is also sensitive to deviations from normality and does not
work, not even with large sample sizes, if the distribution of the
observations is skewed.
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Variance comparison test – implementation in Python

import numpy as np

from scipy.stats import f as Fdist

def Ftest(x,y,alternative=’two-sided’):

dfx = len(x)-1

dfy = len(y)-1

F_stat = np.var(x,ddof=1)/np.var(y,ddof=1)

q = Fdist.cdf(F_stat,dfx,dfy)

if alternative == ’less’:

return F_stat,q

elif alternative == ’greater’:

return F_stat,1-q

else:

return F_stat,2*min(q,1-q)
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Hypothesis testing

Nonparametric (distribution free) statistical tests
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Sign tests and rank tests

Parametric tests are usually preferred over non-parametric tests since they
usually have more statistical power (= lower type 2 error rate) than
non-parametric tests, given that the statistical assumptions are satisfied.

The advantage of sign tests and rank tests is that they do not require
strong distributional assumptions. Sign tests and rank tests are suitable for
continuous quantitative variables, but can also be used for any ordinal
data.

233



Sign test
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One sample sign test

The one sample sign test is applied in similar testing problems as the one
sample t-test. However, the sign test requires milder distributional
assumptions.

Let x1, . . . , xn be observed values of a continuous random variable x with
population median m. Assume that the observed values are i.i.d.

The null hypothesis: H0 : m = m0.

Possible alternative hypotheses:

H1 : m > m0 (one tailed),

H1 : m < m0 (one tailed),

H1 : m ̸= m0 (two tailed).
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One sample sign test

Calculate the differences di = xi −m0, i = 1, . . . , n.

The test statistic S is the number of cases where di > 0.
(Alternatively, the number of cases where di < 0.)

If the null hypothesis H0 is true, then the test statistic follows the
binomial distribution with parameters n and 1/2.

Under H0, the expected value of the test statistic is 1
2n and the

variance is 1
4n.

Large and small values of the test statistic (compared to the expected
value 1

2n) suggest that the null hypothesis H0 is false.

The null hypothesis is rejected if the p-value is small enough.

236



One sample sign test, p-value

The distribution of the test statistic S is tabulated and many softwares
give exact p-values of the test.

Let s denote the observed value of the test statistic S . Then the p-value
of the test is given as follows:

If the alternative hypothesis is H1 : m > m0, then the p-value is
p = P(S ≥ s).

If the alternative hypothesis is H1 : m < m0, then the p-value is
p = P(S ≤ s).

If the alternative hypothesis is H1 : m ̸= m0, then the p-value is
p = 2min(P(S ≥ s),P(S ≤ s)).

Naturally, the probabilities P(S ≤ s) and P(S ≥ s) are calculated under H0.
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.Remark. The sign test can also be used for discrete variables as well. Then
it is possible that for some of the observations di = xi −m0 = 0. If the
number of zeros is small compared to the sample size, these observations
can be deleted and the sample size can be modified accordingly. If the
number of zeros is large, then the zeros should be dealt with such that
they are against rejecting the null hypothesis. For example: consider the
two-tailed null hypothesis, 3 negative signs, 15 positive signs and 6 zeros.
Now the test should be conducted as if there were 9 negative signs and 15
positive ones.

Python:
S stat = sum(x-m0>0)

n = sum(i!=0 for i in x −m0)

#n = len(x) # if the number of zeros in x −m0 is large

p value = scipy.stats.binom test(S stat,n,p=0.5)

If using Scipy 1.12.0 or newer, use binomtest instead of binom test
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One sample sign test – implementation in Python

import numpy as np

from scipy.stats import binom

def signTest_1sample(x,m0,alternative=’two-sided’):

diff = x-m0

S_stat = sum(diff>0)

n = sum(i!=0 for i in diff)

#n = len(x) # if the number of zeros in x −m0 is large

q = binom.cdf(S_stat,n,0.5)

q2 = binom.pmf(S_stat,n,0.5)+1-q # (*)

if alternative == ’less’:

return S_stat,q

elif alternative == ’greater’:

return S_stat,q2

else:

return S_stat,2*min(q,q2)

# Note that in (*), we used P(S≥s) = P(S=s)+1-P(S≤s)
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Asymptotic one sample sign test

If the sample size is large, then under the null hypothesis H0, the
standardized test statistic Z = S−n/2√

n/4
approximately follows the standard

normal distribution.

The approximation is usually good enough if n > 20. For smaller samples,
the test relies on the exact distribution of the test statistic S .
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Paired sign test

The paired sign test is applied in similar testing problems as the paired
t-test.

The observations (xi ,1, xi ,2), i = 1, . . . , n, consist of measured pairs of
a random variable x .

The pairs are assumed to be independent. However, the two values
inside one pair are not assumed to be independent.

Calculate the differences di = xi ,1 − xi ,2, i = 1, . . . , n, of the
measurements xi ,1 and xi ,2.
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Paired sign test

General statistical assumptions: the differences di are i.i.d. and follow
a distribution with median m.

The null hypothesis H0 : m = 0.

Possible alternative hypotheses: H1 : m > 0 (one tailed), H1 : m < 0
(one tailed) or H1 : m ̸= 0 (two tailed).

Now it is possible to apply the one sample sign test for the differences
di .
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Paired sign test – implementation in Python

def signTest_paired(x,y,alternative=’two-sided’):

return signTest_1sample(x-y,0,alternative)
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Numerical example

An imaginary medical study was conducted to examine the effect of
medicine a in lowering beerium levels in plasma. High beerium levels in
plasma are related to several diseases. Beerium levels were measured at the
beginning of the study and again 8 weeks after the treatment. We wish to
study, whether the medicine had the desired effect on 5% significance level.
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Data

Patient Level Difference
Before After

1 1384 1332 -52
2 1640 1564 -76
3 1122 1100 -22
4 1272 1260 -12
5 1380 1360 -20
6 624 1624 1000
7 360 1821 1461
8 456 450 -6
9 1726 1712 -14
10 332 821 489
11 1342 1338 -4
12 1630 1626 -4
13 1170 1160 -10

Table: Beerium levels (µg/1000ml) before and after treatment.
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t-test

One sample t-test
Data: differences
t = 1.5646, df = 12, p-value=0.9282
Alternative hypothesis: true mean is less than 0
Sample estimates: mean of x = 210.
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Sign test

One sample sign test
Data: differences
s = 3, p-value=0.04614
Alternative hypothesis: true median is less than 0
Sample estimates: median of x = −10.
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Compare the results given by the two tests. Neither one of the tests alone
gives a clear view on how the medicine a affects. Why? Based on this
sample, how does the medicine seem to affect? Is there anything
suspicious in the testing set up? Is it OK to use one sided alternative
hypothesis here?
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Wilcoxon signed rank test
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The one sample Wilcoxon signed rank test is applied in similar testing
problems as the one sample t-test. However, the one sample Wilcoxon
signed rank test requires milder distributional assumptions.

Let x1, . . . , xn be observed values of a continuous symmetric random
variable x with population median m. Assume that the observed values are
i.i.d.

The null hypothesis H0 : m = m0.

Possible alternative hypotheses:

H1 : m > m0 (one tailed),

H1 : m < m0 (one tailed),

H1 : m ̸= m0 (two tailed).
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One sample Wilcoxon signed rank test

Calculate the absolute values of the differences |di | = |xi −m0| for
i = 1, . . . , n. Order the absolute values from the smallest to the
largest. Define the signed ranks R⋆(xi ) such that R⋆(xi ) is the rank of
the absolute value |di | = |xi −m0| multiplied with the sign of the
difference xi −m0.

The test statistic W⋆ =
∑

R⋆(xi )>0 R⋆(xi ) is the sum of the positive
ranks. (Alternatively, the sum of the negative ranks.)

Under H0, the expected value of the test statistic is n(n+1)
4 and the

variance is n(n+1)(2n+1)
24 .

Large and small values (compared to the expected value n(n+1)
4 ) if the

test statistic suggest that the null hypothesis H0 is false.

The null hypothesis is rejected if the p-value is small enough.

Python:
, p value = scipy.stats.wilcoxon(x-m0)
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One sample Wilcoxon signed rank test, p-value

The distribution of the test statistic W⋆ is tabulated and many softwares
give exact p-values of the test.

The p-value of the Wilcoxon signed rank test, where w⋆ is the observed
value of the test statistic W⋆, is given as follows:

If the alternative hypothesis is H1 : m > m0, then the p-value is
p = P(W⋆ ≥ w⋆).

If the alternative hypothesis is H1 : m < m0, then the p-value is
p = P(W⋆ ≤ w⋆).

If the alternative hypothesis is H1 : m ̸= m0, then the p-value is
p = 2min(P(W⋆ ≥ w⋆),P(W⋆ ≤ w⋆)).

The probabilities P(W⋆ ≥ w⋆) and P(W⋆ ≤ w⋆) are calculated under the
null H0.
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Asymptotic one sample Wilcoxon signed rank test

Under H0, when the sample size is large, the standardized test statistic
Z = W⋆−E[W⋆]√

Var(W⋆)
, where E[W⋆] =

n(n+1)
4 and Var(W⋆) =

n(n+1)(2n+1)
24 ,

approximately follows the standard normal distribution.

The approximation is usually good enough if n > 20. For smaller samples,
the exact distribution of W⋆ is needed.
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One sample Wilcoxon signed rank test

We assumed above that the observations come from a continuous
distribution. The Wilcoxon signed rank test can be applied for discrete
observations as well. However, it is then possible that some points share
the same rank of absolute values |xi −m0|. In that case, all these points
are assigned to have the median of the corresponding ranks. For example,
if two sample points have the same rank, corresponding to ranks 7 and 8,
then both points are assigned to have rank 7.5. If three sample points
have the same rank corresponding to ranks 3, 4, and 5, then each is
assigned to have rank 4.
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Paired Wilcoxon signed rank test

The paired Wilcoxon signed rank test is applied in similar testing problems
as the paired t-test.

The observations (xi ,1, xi ,2), i = 1, . . . , n, consist of measured pairs of
a random variable x .

The pairs are assumed to be independent. However, the two values
inside one pair are not assumed to be independent.

Calculate the differences di = xi ,1 − xi ,2, i = 1, . . . , n, of the
measurements xi ,1 and xi ,2.
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Paired Wilcoxon signed rank test

General statistical assumptions: the differences di are i.i.d. and follow
a symmetric distribution with median m.

The null hypothesis is H0 : m = 0.

Possible alternative hypotheses: H1 : m > 0 (one tailed), H1 : m < 0
(one tailed) or H1 : m ̸= 0 (two tailed).

Now it is possible to apply the one sample Wilcoxon signed rank test
for the differences di .

Python:
, p value = scipy.stats.wilcoxon(x,y)
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Numerical example

We want to compare the prices of Brand X and Brand Y cookies in
different stores. The distribution of the prices is not known, but it can be
assumed to be symmetrical. 10 different stores were selected randomly for
this study. The cookie prices have been tabulated below.

Brand X 4.56 4.67 4.28 4.57 4.78 4.54 4.56 4.48 4.47 4.50
Brand Y 4.52 4.48 4.51 4.30 4.59 4.67 4.53 4.54 4.71 4.49
Difference 0.04 0.19 -0.23 0.27 0.19 -0.13 0.03 -0.06 -0.24 0.01

Table: Prices of Brand X and Brand Y cookie packages in different stores.
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Numerical example

The price differences are assumed to be symmetrically distributed. The
null hypothesis is that the theoretical medians of the prices of Brand X
and Brand Y cookies do not differ, i.e., the difference of the population
medians is zero. The ordered absolute values of the differences and the
corresponding signed ranks are as follows.

Difference 0.01 0.03 0.04 0.06 0.13 0.19 0.19 0.23 0.24 0.27
Signed rank 1 2 3 -4 -5 6.5 6.5 -8 -9 10

Table: The ordered absolute values of the differences and the corresponding
signed ranks.

The test statistic

W⋆ =
∑

R⋆(di )>0

R⋆(xi ) = 1 + 2 + 3 + 6.5 + 6.5 + 10 = 29.

The p-value (obtained using statistical software) is 0.9219. We do not
reject the null hypothesis.
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Signed test vs. Wilcoxon signed rank test

Both tests are suitable for similar problems: one sample – comparison
of the median to a constant, paired samples – comparison of the
medians.

The tests are non-parametric counterparts of the one sample t-test.

The values of the test statistic do not depend on the numerical values
of the observations – only the order of the observations matters.

No assumption of the type of the population distribution is needed for
the sign test. Symmetry assumption is required for the Wilcoxon
signed rank test.

The Wilcoxon signed rank test uses more information of the order of
the observations.

If the distribution can be assumed to be symmetric, use the Wilcoxon
signed rank test. Otherwise, apply the sign test.
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Two sample Wilcoxon rank test

The two sample Wilcoxon rank test is used in similar settings as the two
sample t-test, but Wilcoxon rank test requires milder assumptions.

In practice, the two sample Wilcoxon rank test is exactly the same test
statistic as the Mann-Whitney test – both names are used in the literature.

Let x1, . . . , xn be the observed values of a continuous random variable x
and let y1, . . . , ym be the observed values of a continuous random variable
y . Assume that the observations x1, . . . , xn are i.i.d. and assume that
y1, . . . , ym are i.i.d. as well. Assume also that xi and yj are independent for
all i , j . Assume that x is distributed as y up to a location shift (i.e., x and
y follow otherwise the same distribution, but possibly with different
medians) and assume that the variables have population medians mx and
my , respectively.
The null hypothesis H0 : mx = my .
Possible alternative hypotheses: H1 : mx > my (one tailed), H1 : mx < my

(one tailed) or H1 : mx ̸= my .
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Two sample Wilcoxon rank test

Consider the samples x1, . . . , xn and y1, . . . , ym. Assume (without loss of
generality) that n ≤ m.

The two sample Wilcoxon rank test is based in analyzing the order of all
the observations. Combine the samples x1, . . . , xn and y1, . . . , ym to one
sample z1, . . . , zn+m. Order the observations zi from the smallest to the
largest. Let R(zi ) be the rank of zi in the combined sample z1, . . . , zn+m.

The test statistic W =
∑n

i=1 R(xi ) is the sum of the ranks of the
smaller sample.

Under H0, the expected value of the test statistic is n(n +m + 1)/2
and the variance is nm(n +m + 1)/12.

Large and small values of the test statistic (compared to the expected
value n(n +m + 1)/2) suggest that the null hypothesis H0 is false.

The null hypothesis H0 is rejected if the p-value is small enough.

Python:
, p value = scipy.stats.mannwhitneyu(x,y)
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Two sample Wilcoxon rank test, p-value

The distribution of the test statistic W is tabulated and many softwares
give the exact p-values.

The p-value of the two sample Wilcoxon rank test, where w is the
observed value of the test statistic W , is defined as follows:

If the alternative hypothesis is H1 : mx > my , then the p-value is
p = P(W ≥ w).

If the alternative hypothesis is H1 : mx < my , then the p-value is
p = P(W ≤ w).

If the alternative hypothesis is H1 : mx ̸= my , then the p-value is
p = 2min(P(W ≥ w),P(W ≤ w)).

Naturally, P(W ≥ w) and P(W ≤ w) are calculated under H0.
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Asymptotic two sample Wilcoxon rank test

Assuming that the null hypothesis is true, if the sample size is large, the
standardized test statistic z = W−E[W ]√

Var(W )
, where E[W ] = n(n +m + 1)/2

and Var(W ) = nm(n +m + 1)/12, approximately follows the standard
normal distribution.

The approximation is usually good enough if n,m > 10. For smaller
samples, the exact distribution of the test statistic W is needed.
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Two sample Wilcoxon rank test

The Wilcoxon rank test can be used also when the observations are
discrete. Then it is possible that some of the sample points have the same
rank. In that case, all those points are assigned to have the median of the
corresponding ranks. For example, if two observations have the same rank,
corresponding to ranks 7 and 8, then both are assigned to have rank 7.5.
If three observations have the same rank, corresponding to ranks 3,5, and
5, then each is assigned to have rank 4.

Note that ranks can be used even when the variables cannot be measured
numerically, but they can be ordered. (For example, one could order/rank
singers, or qualities of apartments, without measuring them numerically.)
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Two sample Wilcoxon rank test

The two sample Wilcoxon rank test is the non-parametric counterpart
of the two sample t-test.

The value of the test statistic depends on the order/rank of the
observed value, not on the exact numerical values of the observations.

The test is an excellent alternative to two sample t-test, when the
populations are not normally distributed.
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Numerical example

The height of 10 randomly chosen students was measured in the corridor
of the Department of Mathematics. The students were put to stand in line
from the shortest to the tallest. There were both, male and female
students, in the sample. We wish to know if there is a difference in the
distribution of male and female students. The null hypothesis is that the
population median of the heights of the female students is equal to the
population median of the heights of the male students.
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The following table displays the gender and rank of the height of the
students.

Student F F M M M F M M F M

Rank 1 2 3 4 5 6 7 8 9 10

Table: Female and male students ordered according to the rank of their height.

The test statistic

W =
4∑

i=1

R(xi ) = 1 + 2 + 6 + 9 = 18

is the sum of the ranks of the smaller, female, sample. We decide to use
the two-tailed alternative hypothesis (why?) and significance level 0.05.
Since the samples are small, we take the critical values of the test statistic
from tabulated values. The critical values are 12 and 32. Since
12 < 18 < 32, we do not reject the null hypothesis.
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