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Course overview

Mondays 8.30 – 11.45 in B6, 23-25 A304.

Course completion by active participation and giving a presentation (∼
45 min).

Timetable:

7.10. First lecture and assignment of topics

14.10. Second lecture/programming sparse grids

21.10. Student talks

28.10. Student talks

4.11.– Student talks (organized by Claudia Schillings)
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What is multivariate integration?
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In many applications, we are interested in computing statistical quantities such as

expectations and variances. In these situations, high dimensional integrals such as

If =

∫
[0,1]d

f (x)dP(x)

may need to be approximated using quadrature rules of the form

Qf =
n∑

i=1

wi f (xi ) ≈ If ,

where (wi )
n
i=1 are weights and (xi )

n
i=1 are nodes in [0, 1]d .

Example (Uncertainty quantification)

Consider the following elliptic PDE with a random diffusion coefficient A:

−∇ · (A(x , ω)∇u(x , ω)) = f (x), x ∈ D, ω ∈ Γ,

u(·, ω)|∂D = 0,

where (Γ,A,P) is a probability space. Natural quantities of interest are the response

statistics of the solution u; typically E[u] and Var[u].
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Multidimensional Monte Carlo integration

Let Ω ⊂ Rd be a bounded domain. We wish to integrate∫
Ω

f (x) dx .

Idea: dx/vol(Ω) is the probability density of the uniform distribution;
hence ∫

Ω

f (x) dx ≈ vol(Ω)

n

n∑
i=1

f (xi ), vol(Ω) =

∫
Ω

dx ,

where (xi )
n
i=1 is a random sample of points in Ω.

Convergence rate: O(1/
√
n) according to the Central Limit Theorem.

Independent of dimension d , but extremely slow nonetheless!
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Multidimensional Quasi-Monte Carlo integration

Quasi-Monte Carlo (QMC) methods leverage smoothness of the integrand
in order to deterministically select a sequence of quadrature nodes
(xi )

n
i=1 such that ∫

[0,1]d

f (x)dx ≈ 1

n

n∑
i=1

f (xi ),

where the approximation to the integral converges at a
faster-than-Monte-Carlo rate.

Convergence rate depends on the function space and QMC method, and
can range from linear convergence to higher order convergence.
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Multidimensional integration over hypercubes [a, b]d

Let ((wi , xi ))ni=1 be the weights and nodes of your favorite univariate
quadrature rule:

b∫
a

f (x) dx ≈
n∑

i=1

wi f (xi ).

Let g : [a, b]d → R be a d-variate function. Then you can integrate over
the hypercube [a, b]d by composing your favorite quadrature rule over all
axes: ∫

[a,b]d

g(x1, . . . , xd) dx1 · · · dxd

≈
n∑

i1=1

· · ·
n∑

id=1

wi1 · · ·widg(xi1 , . . . , xid ).

Cost: nd function evaluations!
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Sparse grids are, by design, certain subsets of the tensor product
quadrature on the previous slide which retain many of the good
approximation properties of tensor grids (e.g., polynomial exactness) while
lessening the number of evaluation points.

For sparse grid methods and QMC methods, the smoothness of the
integrand is leveraged in order to obtain a convergence rate faster than
Monte Carlo.
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Univariate integration
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Newton–Cotes rules
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Midpoint rule: Unf =
∑n

i=1(xi − xi−1)f
( xi−1+xi

2

)
≈
∫ b
a f (x)dx
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Trapezoidal rule: Unf =
∑n

i=1(xi − xi−1)
f (xi−1)+f (xi )

2 ≈
∫ b
a f (x)dx
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Simpson’s rule: Unf =
∑n

i=1(xi − xi−1)
f (xi−1)+4f (xi )+f (xi+1)

3 ≈
∫ b
a f (x) dx
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Gaussian quadratures
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Gaussian quadratures are used to evaluate integrals of the form∫
I

f (x)W (x) dx ≈
n∑

i=1

wi f (xi ). (1)

Let (pk)∞k=0 be a family of orthogonal polynomials with respect to the inner
product 〈p, q〉W :=

∫
I p(x)q(x)W (x)dx .1 It turns out that by taking the

roots of pn as the quadratures nodes (xi )
n
i=1, the weights (wi )

n
i=1 can be

chosen s.t. equality in (1) holds for polynomials with degree ≤ 2n − 1.

It can be shown that any orthogonal polynomial pn w.r.t. 〈·, ·〉W has n
real, distinct roots that lie in the interval I.

The interval I = [−1, 1] and weight W (x) = 1 is associated with the
Legendre polynomials Pn.

The interval I = R and weight W (x) = e−x
2

is associated with the
Hermite polynomials Hn.

1The weight function is assumed to be non-negative a.e. such that 〈xk , 1〉W <∞ ∀k.
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All orthogonal polynomials admit to a three-term recurrence relation

p0(x) = 1,

p1(x) = (x − α1)p0(x),

pk+1(x) = (x − αk+1)pk(x)− βk+1pk−1(x),

where

αk+1 =
〈xpk , pk〉W
〈pk , pk〉W

and βk+1 =
〈pk , pk〉W
〈pk−1, pk−1〉W

.

Example (Legendre polynomials)

αk = 0 ∀k and βk =
(k − 1)2

4k2 − 8k + 3
, k ≥ 2.

Example (Hermite polynomials)

αk = 0 ∀k and βk =
k − 1

2
, k ≥ 2.

Similar formulae exist for most known families of orthogonal polynomials.
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Algorithm (Golub–Welsch)

(i) Construct the tridiagonal n × n matrix

A =


α1

√
β2√

β2 α2
√
β3

√
β3 α3

. . .
. . .

. . .
√
βn√

βn αn

 .

(ii) Fact: The eigenvalues x1, . . . , xn of A are precisely the roots of pn.

(iii) Fact: Let qj = [q1,j , . . . , qn,j ]
T be the normalized eigenvector

corresponding to eigenvalue xj . Then wj = q2
1,j

∫
I
W (x) dx.

(iv) Compute the Gaussian quadrature∫
I

W (x)f (x)dx ≈
n∑

i=1

wi f (xi ).
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Gauss–Legendre quadrature in [−1, 1] based on roots of the Legendre polynomial Pn for

n ∈ {1, . . . , 9}.
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Clenshaw–Curtis quadrature and other nested quadrature rules
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Clenshaw–Curtis nodes in 1d

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0
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Clenshaw–Curtis nodes in 1d

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

9-point Clenshaw–Curtis rule on [−1, 1]
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Clenshaw–Curtis nodes in 1d

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

9-point Clenshaw–Curtis rule on [−1, 1]

The sequence of 1, 3, 5, ..., 2n−1 + 1 -point CC nodes is important (a
nested sequence of nodes).
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The Clenshaw–Curtis quadrature rule is an interpolatory (but not Gaussian) quadrature
rule in the interval I = [−1, 1] with the weight W (x) = 1.

An n-point CC rule integrates exactly polynomials up to degree n − 1.

For non-polynomials, CC has comparable accuracy to Gaussian quadratures for the
same number of points (it is enough that the Chebyshev approximation of the
integrand is rapidly converging).

It is convenient to choose a sequence of CC rules with (mi )
∞
i=1 = (1, 3, 5, 9, 13, . . .) points

to make the subsequent CC rules nested. Here, m1 = 1 and mi = 2i−1 + 1, i > 1. Then
the nodes (x i

j )
mi
j=1 and weights (w i

j )mi
j=1 of an mi -point CC rule have explicit formulae

x i
j = − cos

(
π(j − 1)

mi − 1

)
, j ∈ {1, . . . ,mi}

w i
j = w i

mi+1−j =


1

mi (mi−2)
, j ∈ {1,mi}

2
mi−1

(
1− cos(π(j−1))

mi (mi−2)
− 2

∑(mi−3)/2
k=1

1
4k2−1

cos

(
2πk(j−1)
mi−1

))
otherwise.

An O(n log n) FFT-based implementation available, e.g., at
https://www.mathworks.com/matlabcentral/fileexchange/

6911-fast-clenshaw-curtis-quadrature?focused=5058689&tab=function.
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Miscellaneous nested quadrature rules:

The Gauss–Patterson rules are a nested variant of the Gauss–Legendre
rule with I = [−1, 1] and W (x) = 1. The degree of exactness is
between n − 1 and 2n − 1. Cf., e.g., https://people.sc.fsu.edu/

~jburkardt/f_src/patterson_rule/patterson_rule.html.

The Genz–Keister rules are a nested variant of the Gauss–Hermite
rule with I = R and W (x) = e−x

2
. The degree of exactness is

between n − 1 and 2n − 1. Cf., e.g., https://people.sc.fsu.edu/

~jburkardt/f_src/sandia_rules/sandia_rules.html.

Generating these rules is, in general, very difficult and in practice one needs
to resort to using mathematical tables to obtain their nodes and weights.

In many cases, it is desirable to use nested univariate rules in order to
generate efficient sparse grid quadrature rules.
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Tensor products
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Let E be an arbitrary normed space equipped with the norm ‖ · ‖E and let
T : E → R be a bounded, linear functional. The operator norm of T is
defined by

‖T‖ := sup
‖x‖E≤1

|Tx |.

Multi-index notation:
We use the convention 0 ∈ N. If α ∈ Nd , then we refer to its j th

coordinate universally as αj . Let β ∈ Nd . We write α ≥ β if αj ≥ βj for
all j = 1, ..., d . We define additionally the shorthand 1 = (1, ..., 1) ∈ Nd .
We define the following multi-index norms

|α|1 =
d∑

i=1

αi and |α|∞ = max
1≤i≤d

αi

and introduce the following convention for the mixed derivative operator:

∂α

∂xα
=

∂|α|1

∂xα1
1 · · · ∂x

αd
d

, x = (x1, ..., xd) ∈ Rd .
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We turn our attention to the function spaces

H r (Ω)=

{
f : Ω→ R;

∂αf (x)

∂xα
exists and is bounded in Ω for all |α|∞ ≤ r

}
for a fixed region ∅ 6= Ω ⊆ Rd . We call r the regularity of functions in
H r (Ω) and accompany these function spaces with the respective norms

||f ||Hr (Ω) = max
α∈Nd

|α|∞≤r

sup

{∣∣∣∣∂αf (x)

∂xα

∣∣∣∣ ; x ∈ Ω

}
.

University of Mannheim Sparse grid methods October 7, 2019 25 / 49



Suppose that ∅ 6= Ω ⊆ Rd1 and ∅ 6= Ξ ⊆ Rd2 and let S : H r (Ω)→ R and
T : H r (Ξ)→ R be functionals. Suppose additionally that they admit to
representations

Sf =
m∑
i=1

ai f (xi ) and T f̃ =
n∑

i=1

bi f̃ (yi )

for a selection of positive weights (ai )
m
i=1 and (bi )

n
i=1 and vectors (xi )

m
i=1

and (yi )
n
i=1 in the domains Ω and Ξ. Now Ω× Ξ ⊆ Rd1+d2 and the tensor

product of S and T is the linear functional S ⊗ T : H r (Ω× Ξ)→ R

defined by setting

(S ⊗ T )f =
m∑
i=1

n∑
j=1

aibj f (xi , yj).
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Let Ωj 6= ∅ be regions in Euclidean spaces Rdj and let Tj : H r (Ωj)→ R

be functionals for j = 1, 2, 3, ... such that

Tj f =

mj∑
i=1

w
(j)
i f (x

(j)
i ),

where (w
(j)
i )

mj

i=1 are positive weights and (x
(j)
i )

mj

i=1 is a sequence of vectors
in Ωj .

We define the following shorthand notation:

1⊗
i=1

Ti := T1 and
n⊗

i=1

Ti :=

( n−1⊗
i=1

Ti

)
⊗ Tn for n = 2, 3, 4, ... .

By induction with respect to n it is easy to see that T1 ⊗ · · · ⊗ Tn defines
a linear functional H r (Ω1 × · · · × Ωn)→ R such that

n⊗
i=1

Ti f =

m1∑
i1=1

· · ·
mn∑
in=1

w
(1)
i1
· · ·w (n)

in
f (x

(1)
i1
, ..., x

(n)
in

) for n = 1, 2, 3, ... .
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Properties of tensor products of linear functionals

Noncommutative: generally S ⊗ T 6= T ⊗ S .

Associative: (S ⊗ T )⊗ R = S ⊗ (T ⊗ R).

Distributive: (S + T )⊗ R = S ⊗ R + T ⊗ R.

Theorem

Let Ti be quadrature operators. Then∥∥∥∥ n⊗
i=1

Ti

∥∥∥∥ =
n∏

i=1

‖Ti‖

in their respective operator norms.
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Example: tensor product quadrature

Consider the problem of approximating

Id f :=

∫
[0,1]d

f (y1, . . . , yd)dy1 · · · dyd .

Suppose that we have a “good” univariate quadrature rule that satisfies

Q1f :=
n∑

i=1

wi f (xi ) ≈
∫ 1

0
f (x) dx .
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Applying this good univariate quadrature rule component-wise to this
multidimensional integral yields

Id f =

∫
[0,1]d

f (y1, . . . , yd) dy1 · · · dyd

≈
∫

[0,1]d−1

n∑
id=1

wid f (y1, . . . , yd−1, xid ) dy1 · · · dyd−1

≈
∫

[0,1]d−2

n∑
id−1=1

n∑
id=1

wid−1
wid f (y1, . . . , yd−2, xid−1

xid )dy1 · · · dyd−2

...

≈
n∑

i1=1

· · ·
n∑

id=1

wi1 · · ·wid f (xi1 , . . . , xid ) =
d⊗

i=1

Q1f .
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The tensor product quadrature rule has good approximation properties,
but it requires evaluating the integrand f over the point set

{(xi1 , . . . , xid ) | 1 ≤ i1, . . . , id ≤ n}

which contains nd elements. Curse of dimensionality.
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Smolyak’s sparse grids

University of Mannheim Sparse grid methods October 7, 2019 32 / 49



Definition (Smolyak quadrature rule)

Let (Ui )
∞
i=1 be a sequence of univariate quadrature rules in the interval

∅ 6= I ⊆ R. We introduce the difference operators by setting

∆0 = 0, ∆1 = U1 and ∆i+1 = Ui+1 − Ui for i = 1, 2, 3, ... .

The Smolyak quadrature rule of order k in the hyperrectangle
I d = I × · · · × I is the operator

Qd
k =

∑
|α|1≤k
α∈Nd

d⊗
i=1

∆αi
. (2)

The tensor product ∆α1 ⊗ · · · ⊗∆αd
in the summand of (2) vanishes

whenever αi = 0 for some index i . In the sequel we always assume that
α ≥ 1 and hence k ≥ d .
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Example

This example illustrates an important point about sparse grids: they
generally contain negative weights as well as positive weights!

Q2
3 =

∑
|α|1≤3
α∈N2

2⊗
i=1

∆αi

= ∆1 ⊗∆1 + ∆2 ⊗∆1 + ∆1 ⊗∆2

= U1 ⊗ U1 + (U2 − U1)⊗ U1 + U1 ⊗ (U2 − U1)

= U2 ⊗ U1 + U1 ⊗ U2 − U1 ⊗ U1.

If we choose the midpoint rule in [0, 1] as the basis of the Smolyak
quadrature, i.e., U1f = f ( 1

2 ) and U2f = 1
2 f
(

1
4

)
+ 1

2 f
(

3
4

)
, then

Q2
3 = 1

2 f
(

1
4 ,

1
2

)
+ 1

2 f
(

3
4 ,

1
2

)
+ 1

2 f
(

1
2 ,

1
4

)
+ 1

2 f
(

1
2 ,

3
2

)
− f
(

1
2 ,

1
2 ).
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Important properties

In the case d = 1, we obtain

Q1
k =

k∑
i=1

∆i = U1 + (U2 − U1) + . . .+ (Uk − Uk−1) = Uk ∀k ≥ 1.

We can directly apply properties of univariate quadrature rules to the
Smolyak rule in the one-dimensional case. This makes properties of the
Smolyak rule easy to prove by dimension-wise induction.
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Using the difference operators defined above, we can write the tensor
product quadrature operator Uk ⊗ · · · ⊗ Uk of order k in the form

d⊗
i=1

Uk =

(
k∑

α1=0

∆α1

)
⊗ · · · ⊗

 k∑
αd=0

∆αd

 =
k∑

α1=0

· · ·
k∑

αd=0

d⊗
i=1

∆αi

=
∑
|α|∞≤k
α∈Nd

d⊗
i=1

∆αi
.

The Smolyak quadrature rule can be considered as a delayed sum of the
ordinary tensor product operator Uk ⊗ · · · ⊗ Uk .
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Left: Product grids Xi1 × Xi2 such that #Xk = 2k−1 and |(i1, i2)|∞ ≤ 3.
Right: The grid corresponding to rule Q2

4 is the set⋃
{Xi1
× Xi2

; |(i1, i2)|1≤4}
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Characterizations and the combination method
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Dimension recursion is a quintessential property of the Smolyak rule.
Dimensionally recursive formulations allow us to perform the
dimension-wise induction step and prove properties of the Smolyak rule.

Proposition (Dimension recursion)

Let k ≥ d ≥ 2. Then

Qd
k =

∑
|α|1≤k−1

α∈Nd−1, α≥1

(
d−1⊗
i=1

∆αi

)
⊗ Uk−|α|1 =

k−1∑
i=d−1

Qd−1
i ⊗∆k−i .

Proof. We start by proving the first equality. Let us denote the index set

I (k, d) = {α ∈ Nd ; |α|1 ≤ k and α ≥ 1}.

It is easy to check that the following recursion relation is valid for
k ≥ d ≥ 2:

I (k, d) = {(α, j) ∈ Nd ; α ∈ I (k − 1, d − 1) and 1 ≤ j ≤ k − |α|1}.
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The first equality can now be proved by writing the summation index set
of the Smolyak rule recursively and utilizing the distributive property of the
tensor product. In this way we attain

Qd
k =

∑
|α|1≤k

α∈Nd , α≥1

d−1⊗
i=1

∆αi =
∑

|α|1≤k−1
α∈Nd−1, α≥1

k−|α|1∑
j=1

(
d−1⊗
i=1

∆αi

)
⊗∆j

=
∑

|α|1≤k−1
α∈Nd−1, α≥1

(
d−1⊗
i=1

∆αi

)
⊗

k−|α|1∑
j=1

∆j

=
∑

|α|1≤k−1
α∈Nd−1, α≥1

(
d−1⊗
i=1

∆αi

)
⊗ Uk−|α|1 ,

where the last equality follows from the telescoping property.
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To prove the second equality, we use the first one to obtain

Qd
k =

∑
|α|1≤k−1

α∈Nd−1, α≥1

(
d−1⊗
i=1

∆αi

)
⊗ Uk−|α|1

=
k−1∑

j=d−1

∑
|α|1=j

α∈Nd−1, α≥1

(
d−1⊗
i=1

∆αi

)
⊗ Uk−j

=
k−1∑

j=d−1

∑
|α|1=j

α∈Nd−1, α≥1

(
d−1⊗
i=1

∆αi

)
⊗

k−1∑
`=j

∆k−`

=
k−1∑

j=d−1

k−1∑
`=j

∑
|α|1=j

α∈Nd−1, α≥1

(
d−1⊗
i=1

∆αi

)
⊗∆k−`.
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On the previous slide, we obtained

Qd
k =

k−1∑
j=d−1

k−1∑
`=j

∑
|α|1=j

α∈Nd−1, α≥1

(
d−1⊗
i=1

∆αi

)
⊗∆k−`.

Changing the order of the first two summation signs nets us

Qd
k =

k−1∑
`=d−1

( ∑̀
j=d−1

∑
|α|1=j

α∈Nd−1, α≥1

d⊗
i=1

∆αi

)
⊗∆k−` =

k−1∑
`=d−1

Qd−1
` ⊗∆k−`

proving the claim.
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The next formula is computationally useless, but it plays a large role in the
theoretical derivation of the combination method.

Lemma

Let α ∈ Nd and α ≥ 1. Then

d⊗
i=1

∆αi
=

∑
γ∈{0,1}d
α−γ≥1

(−1)|γ|1
d⊗

i=1

Uαi−γi .

Proof. By dimension-wise induction. In the base case d = 1, we need only
to verify the two possible cases:

∆1 = U1 = (−1)0U1−0;

∆i = Ui − Ui−1 = (−1)0Ui−0 + (−1)1Ui−1, i ≥ 2.
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Next we suppose that the claim holds for some d ≥ 1. Let α ∈ Nd+1 and
α ≥ 1. If we first assume that αd+1 6= 1, then we get by direct
computation

∑
γ∈{0,1}d+1

α−γ≥1

(−1)|γ|1
d+1⊗
i=1

Uαi−γi =
∑

γ∈{0,1}d
α−γ≥1

(−1)|γ|1+0

(
d⊗

i=1

Uαi−γi

)
⊗ Uαd+1−0

+
∑

γ∈{0,1}d
α−γ≥1

(−1)|γ|1+1

(
d⊗

i=1

Uαi−γi

)
⊗ Uαd+1−1

=
∑

γ∈{0,1}d
α−γ≥1

(−1)|γ|1

(
d⊗

i=1

Uαi−γi

)
⊗∆αd+1

since ∆αd+1
= Uαd+1

− Uαd+1−1.
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On the last slide, we obtained

∑
γ∈{0,1}d+1

α−γ≥1

(−1)|γ|1
d+1⊗
i=1

Uαi−γi =
∑

γ∈{0,1}d
α−γ≥1

(−1)|γ|1

(
d⊗

i=1

Uαi−γi

)
⊗∆αd+1

under the assumption that αd+1 6= 1.

The induction hypothesis implies that

∑
γ∈{0,1}d
α−γ≥1

(−1)|γ|1

(
d⊗

i=1

Uαi−γi

)
=

(
d⊗

i=1

∆αi

)

as desired.

If αd+1 = 1, then we substitute Uαd+1−1 = 0 in the computations above
and arrive at the same conclusion. This proves the claim.
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A (computationally) useful characterization is given by the following
theorem.

Theorem (Combination method)

Let Ui be univariate quadrature rules in the interval ∅ 6= I ⊆ R and
suppose that k ≥ d. Then

Qd
k =

∑
max{d ,k−d+1}≤|α|1≤k

α∈Nd , α≥1

(−1)k−|α|1
(

d − 1
k − |α|1

) d⊗
i=1

Uαi .
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Proof. The previous lemma immediately yields

Qd
k =

∑
|α|1≤k
α∈Nd

∑
γ∈{0,1}d
α−γ≥1

(−1)|γ|1
d⊗

i=1

Uαi−γi .

Changing the order of summation we get

Qd
k =

∑
γ∈{0,1}d

∑
|α|1≤k

α∈Nd , α−γ≥1

(−1)|γ|1
d⊗

i=1

Uαi−γi .

Change of variable: β = α− γ. The restrictions now are β ≥ 1 and
|β|1 ≤ k − |γ|1. Changing the order of summation:

Qd
k =

∑
|β|1≤k

β∈Nd , β≥1

∑
γ∈{0,1}d
|γ|1≤k−|β|1

(−1)|γ|1
d⊗

i=1

Uβi .
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The interior sum can be simplified as

∑
γ∈{0,1}d
|γ|1≤k−|β|1

(−1)|γ|1 =

min{d ,k−|β|1}∑
i=0

(−1)i
∑

γ∈{0,1}d
|γ|1=i

1

=

min{d ,k−|β|1}∑
i=0

(−1)i#{γ ∈ {0, 1}d ; |γ|1 = i}

=

min{d ,k−|β|1}∑
i=0

(−1)i
(
d
i

)
= (−1)k−|β|1

(
d − 1

k − |β|1

)
,

proving the assertion.
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End of part 1

Next week:

Convergence rates for sparse grids.

Dimension adaptive formulations (replacing the index set in the
Smolyak construction with a more general formulation).

Programming sparse grids.
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