Sparse grid methods (continued)

Vesa Kaarnioja (kaarnioja@uni-mannheim.de) Claudia Schillings (c.schillings@uni-mannheim.de)

> October 14, 2019 University of Mannheim

Short recap of last week

For any multi-index $\alpha \in \mathbb{N}^d$ (here $0 \in \mathbb{N}$), we define $|\alpha|_1 = \sum_{i=1}^d \alpha_i$ and $|\alpha|_{\infty} = \max_{1 \leq i \leq d} \alpha_i$.

We consider the function spaces

for a fixed region $\emptyset \neq \Omega \subseteq \mathbb{R}^d$. We call *r* the *regularity* of functions in $H^r(\Omega)$ and accompany these function spaces with the respective norms

$$||f||_{H^{r}(\Omega)} = \max_{\substack{\alpha \in \mathbb{N}^{d} \\ |\alpha|_{\infty} \leq r}} \sup \left\{ \left| \frac{\partial^{\alpha} f(x)}{\partial x^{\alpha}} \right|; \ x \in \Omega \right\}.$$

Let $T: H^r(\Omega) \to \mathbb{R}$ be a bounded, linear functional. The *operator norm* of T is defined by

$$||T|| := \sup_{\|f\|_{H^{r}(\Omega)} \le 1} |Tf|.$$

Naturally, $|Tf| \leq ||T|| ||f||_{H^{r}(\Omega)}$ for all $f \in H^{r}(\Omega)$.

Suppose that $\emptyset \neq \Omega \subseteq \mathbb{R}^{d_1}$ and $\emptyset \neq \Xi \subseteq \mathbb{R}^{d_2}$ and let $S \colon H^r(\Omega) \to \mathbb{R}$ and $T \colon H^r(\Xi) \to \mathbb{R}$ be functionals. Suppose additionally that they admit to representations

$$Sf = \sum_{i=1}^{m} a_i f(x_i)$$
 and $T\tilde{f} = \sum_{i=1}^{n} b_i \tilde{f}(y_i)$

for a selection of positive weights $(a_i)_{i=1}^m$ and $(b_i)_{i=1}^n$ and vectors $(x_i)_{i=1}^m$ and $(y_i)_{i=1}^n$ in the domains Ω and Ξ . Now $\Omega \times \Xi \subseteq \mathbb{R}^{d_1+d_2}$ and the *tensor* product of S and T is the linear functional $S \otimes T : H^r(\Omega \times \Xi) \to \mathbb{R}$ defined by setting

$$(S \otimes T)f = \sum_{i=1}^m \sum_{j=1}^n a_i b_j f(x_i, y_j).$$

During this lecture, we shall consider the sequence of univariate Clenshaw–Curtis quadrature rules $(U_i)_{i=1}^{\infty}$, which are of the form

$$U_i f = \sum_{j=1}^{m_i} w_j^i f(x_j^i), \quad f \in H^r([-1,1]^d).$$

The *i*th CC rule has m_i -points, where $m_1 = 1$ and $m_i = 2^{i-1} + 1$, i > 1. The nodes $(x_j^i)_{j=1}^{m_i}$ and weights $(w_j^i)_{j=1}^{m_i}$ of an m_i -point CC rule have explicit formulae

$$\begin{aligned} x_j^i &= -\cos\left(\frac{\pi(j-1)}{m_i-1}\right), \quad j \in \{1, \dots, m_i\} \\ w_j^i &= w_{m_i+1-j}^i = \begin{cases} \frac{1}{m_i(m_i-2)}, & j \in \{1, m_i\} \\ \frac{2}{m_i-1} \left(1 - \frac{\cos(\pi(j-1))}{m_i(m_i-2)} - 2\sum_{k=1}^{(m_i-3)/2} \frac{1}{4k^2-1} \cos\left(\frac{2\pi k(j-1)}{m_i-1}\right) \right) & \text{otherwise.} \end{cases} \end{aligned}$$

The evaluation points of the CC rules are nested: Let us denote $X_i := \{x_j^i\}_{j=1}^{m_i}$. Then $X_i \subset X_{i+1}$ for all $i \ge 1$.

Properties of tensor products of linear functionals

- Noncommutative: generally $S \otimes T \neq T \otimes S$.
- Associative: $(S \otimes T) \otimes R = S \otimes (T \otimes R)$.
- Distributive: $(S + T) \otimes R = S \otimes R + T \otimes R$.

Theorem

Let T_i be quadrature operators. Then

$$\left\|\bigotimes_{i=1}^{n}T_{i}\right\|=\prod_{i=1}^{n}\|T_{i}\|$$

in their respective operator norms.

If
$$f(x, y) = g(x)h(y)$$
, then $(S \otimes T)f = Sg \cdot Th$.

Definition (Smolyak quadrature rule)

Let $(U_i)_{i=1}^{\infty}$ be a sequence of univariate quadrature rules in the interval $\emptyset \neq I \subseteq \mathbb{R}$. We introduce the *difference operators* by setting

$$\Delta_0=0, \quad \Delta_1=U_1 \quad \text{and} \quad \Delta_{i+1}=U_{i+1}-U_i \quad \text{for } i=1,2,3,\dots.$$

The *Smolyak* quadrature rule of order k in the hyperrectangle $I^d = I \times \cdots \times I$ is the operator

$$\mathcal{Q}_{k}^{d} = \sum_{\substack{|\alpha|_{1} \leq k \\ \alpha \in \mathbb{N}^{d}}} \bigotimes_{i=1}^{d} \Delta_{\alpha_{i}}.$$
(1)

The tensor product $\Delta_{\alpha_1} \otimes \cdots \otimes \Delta_{\alpha_d}$ in the summand of (1) vanishes whenever $\alpha_i = 0$ for some index *i*. In the sequel we always assume that $\alpha \ge 1$ and hence $k \ge d$.

University of Mannheim

Proposition (Dimension recursion)

Let $k \ge d \ge 2$. Then

$$\mathcal{Q}_{k}^{d} = \sum_{\substack{|\alpha|_{1} \leq k-1 \\ \alpha \in \mathbb{N}^{d-1}, \ \alpha \geq 1}} \left(\bigotimes_{i=1}^{d-1} \Delta_{\alpha_{i}} \right) \otimes U_{k-|\alpha|_{1}} = \sum_{i=d-1}^{k-1} \mathcal{Q}_{i}^{d-1} \otimes \Delta_{k-i}.$$

A (computationally) useful characterization:

Theorem (Combination method)

Let U_i be univariate quadrature rules in the interval $\emptyset \neq I \subseteq \mathbb{R}$ and suppose that $k \geq d$. Then

$$\mathcal{Q}_{k}^{d} = \sum_{\substack{\max\{d, k-d+1\} \le |\alpha|_{1} \le k \\ \alpha \in \mathbb{N}^{d}, \ \alpha \ge 1}} (-1)^{k-|\alpha|_{1}} \binom{d-1}{k-|\alpha|_{1}} \bigotimes_{i=1}^{d} U_{\alpha_{i}}.$$
(2)

Exercise. Using the formula

$$\mathcal{Q}_k^d = \sum_{\substack{\max\{d,k-d+1\} \leq |lpha|_1 \leq k \ lpha \in \mathbb{N}^d, \ lpha \geq 1}} (-1)^{k-|lpha|_1} inom{d-1}{k-|lpha|_1} inom{d}{k-|lpha|_1} inom{d}{k-|lpha|_1}$$

expand the above expression to find the Smolyak quadrature rule Q_3^2 . Next, plug the Clenshaw–Curtis quadrature rules

$$U_1 f = f(\frac{1}{2})$$
 and $U_2 f = \frac{1}{6}f(0) + \frac{2}{3}f(\frac{1}{2}) + \frac{1}{6}f(1)$

into the formula you obtained for \mathcal{Q}_3^2 and derive a quadrature rule in the form

$$Q_3^2 f = w_1 f(x_1) + w_2 f(x_2) + w_3 f(x_3) + w_4 f(x_4) + w_5 f(x_5),$$

where $(w_i)_{i=1}^5$ are weights and $(x_i)_{i=1}^5$ are elements in $[0,1]^2$.

Solution. You should obtain (akin to last week's example)

$$\mathcal{Q}_3^2 = \mathcal{U}_1 \otimes \mathcal{U}_2 + \mathcal{U}_2 \otimes \mathcal{U}_1 - \mathcal{U}_1 \otimes \mathcal{U}_1.$$

Substituting the Clenshaw-Curtis rules yields

$$\mathcal{Q}_{3}^{2}f = \frac{1}{6}f(\frac{1}{2},0) + \frac{1}{6}f(\frac{1}{2},1) + \frac{1}{6}f(0,\frac{1}{2}) + \frac{1}{6}f(1,\frac{1}{2}) + \frac{1}{3}f(\frac{1}{2},\frac{1}{2}).$$

Today, we consider the problem of approximating

$$\mathcal{I}^d f := \int_{[-1,1]^d} f(y_1,\ldots,y_d) \,\mathrm{d} y_1 \cdots \mathrm{d} y_d, \quad f \in H^r([-1,1]^d).$$

To this end, let us extend the definition of the tensor product as follows: if $Tf = \sum_{i=1}^{n} w_i f(x_i)$ for $f \in H^r([-1,1]^s)$, then we define

$$(\mathcal{T} \otimes \mathcal{I}^{d})f = \sum_{i=1}^{n} w_{i} \int_{[-1,1]^{s}} f(x_{i}, y) \, \mathrm{d}y$$
$$(\mathcal{I}^{d} \otimes \mathcal{T})f = \sum_{i=1}^{n} w_{i} \int_{[-1,1]^{s}} f(y, x_{i}) \, \mathrm{d}y$$
$$(\mathcal{I}^{d} \otimes \mathcal{I}^{s})f = \int_{[-1,1]^{s+d}} f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

for $f \in H^r([-1,1]^{d+s})$. Note that $\|\mathcal{I}^d \otimes T\| = \|T \otimes \mathcal{I}^d\| = \|\mathcal{I}^d\|\|T\|$.

Some essential combinatorics

Lemma

$$\sum_{\substack{|lpha|_1=k\lpha\in\mathbb{N}^d,\ lpha\geq 1}}1=inom{k-1}{d-1}$$
 and $\sum_{\substack{|lpha|_1\leq k\lpha\in\mathbb{N}^d,\ lpha\geq 1}}1=inom{k}{d}.$

Proof. The first identity follows from a combinatorial ("stars and bars") argument. The second identity follows from

$$\sum_{\substack{|\alpha|_1 \leq k \\ \alpha \in \mathbb{N}^d, \ \alpha \geq 1}} 1 = \sum_{\ell=d}^k \sum_{\substack{|\alpha|_1 = \ell \\ \alpha \in \mathbb{N}^d, \ \alpha \geq 1}} 1 = \sum_{\ell=d}^k \binom{\ell-1}{d-1} = \binom{k}{d},$$

where the final equality follows from the summation formula for the diagonals of Pascal's triangle (proof by induction and using Pascal's identity; omitted.)

University of Mannheim

On the distribution of Smolyak quadrature nodes

The evaluation points of \mathcal{Q}_k^d form the set

$$\eta(k,d) = \bigcup_{\substack{\max\{d,k-d+1\} \le |\alpha|_1 \le k \\ \alpha \in \mathbb{N}^d, \ \alpha \ge \mathbf{1}}} X_{\alpha_1} \times \cdots \times X_{\alpha_d} \quad \text{for all } k \ge d.$$

The elements of the set $\eta(k, d)$ are the *nodes* of \mathcal{Q}_k^d .

If the univariate rules are nested, i.e., $X_i \subseteq X_{i+1}$ (as is the case with CC rules), then the nodes of \mathcal{Q}_k^d form the set

$$\eta(k,d) = \bigcup_{\substack{|\alpha|_1 = k \\ \alpha \in \mathbb{N}^d, \ \alpha \ge 1}} X_{\alpha_1} \times \cdots \times X_{\alpha_d} \quad \text{for all } k \ge d.$$
(3)

Figure: Left: non-nested Smolyak–Gauss–Legendre rules Q_k^d for d = 2 and $k \in \{5,6\}$. Right: nested Smolyak–Gauss–Patterson rules Q_k^d for d = 2 and $k \in \{5,6\}$.

Error analysis

Note that

$$|\mathcal{I}^d f - \mathcal{Q}^d_k f| \leq ||\mathcal{I}^d - \mathcal{Q}^d_k|| ||f||_{H^r(\Omega)}.$$

We can estimate the worst case error of the Smolyak quadrature rule Q_k^d by bounding the operator norm of $\mathcal{I}^d - Q_k^d$.

It is known from classical approximation theory that the sequence of univariate CC rules satisfy

$$\|\mathcal{I}^1 - U_k\| \le \gamma_r 2^{-rk} \tag{4}$$

for some sequence of numbers $(\gamma_r)_{r\geq 0}$.

Lemma

The Smolyak–Clenshaw–Curtis quadrature rules satisfy the bound

$$\|\mathcal{I}^d-\mathcal{Q}^d_k\|\leq \gamma_r\max\{2^{r+1},\gamma_r(1+2^r)\}^{d-1}\binom{k}{d-1}2^{-rk}.$$

Proof. By dimension-wise induction. The case d = 1 is immediate since (4) and the telescoping property imply that

$$\|\mathcal{I}^{1} - \mathcal{Q}_{k}^{1}\| = \|\mathcal{I}^{1} - U_{k}\| \le \gamma_{r} 2^{-rk} \le \gamma_{r} \underbrace{\max\{2^{r+1}, \gamma_{r}(1+2^{r})\}}_{\ge 1} \underbrace{\binom{k}{1-1}}_{-1} 2^{-rk}$$

as desired.

Next assume that the claim

$$\|\mathcal{I}^d - \mathcal{Q}^d_k\| \leq \gamma_r \max\{2^{r+1}, \gamma_r(1+2^r)\}^{d-1} \binom{k}{d-1} 2^{-rk}$$

holds for some $d \ge 1$. Then

$$\begin{split} \mathcal{I}^{d+1} &- \mathcal{Q}^{d+1}_{k+1} = \mathcal{I}^{d} \otimes \mathcal{I}^{1} - \mathcal{Q}^{d}_{k} \otimes \mathcal{I}^{1} + \mathcal{Q}^{d}_{k} \otimes \mathcal{I}^{1} - \mathcal{Q}^{d+1}_{k+1} \\ &= (\mathcal{I}^{d} - \mathcal{Q}^{d}_{k}) \otimes \mathcal{I}^{1} + \sum_{\substack{|\alpha|_{1} \leq k \\ \alpha \in \mathbb{N}^{d}, \ \alpha \geq 1}} \left(\bigotimes_{i=1}^{d} \Delta_{\alpha_{i}} \right) \otimes \mathcal{I}^{1} - \sum_{\substack{|\alpha|_{1} \leq k \\ \alpha \in \mathbb{N}^{d}, \ \alpha \geq 1}} \left(\bigotimes_{i=1}^{d} \Delta_{\alpha_{i}} \right) \otimes \mathcal{U}_{k+1-|\alpha|_{1}} \\ &= (\mathcal{I}^{d} - \mathcal{Q}^{d}_{k}) \otimes \mathcal{I}^{1} + \sum_{\substack{|\alpha|_{1} \leq k \\ \alpha \in \mathbb{N}^{d}, \ \alpha \geq 1}} \left(\bigotimes_{i=1}^{d} \Delta_{\alpha_{i}} \right) \otimes (\mathcal{I}^{1} - \mathcal{U}_{k+1-|\alpha|_{1}}). \end{split}$$

Taking the operator norm

$$\|\mathcal{I}^{d+1}-\mathcal{Q}_{k+1}^{d+1}\|\leq\|\mathcal{I}^d-\mathcal{Q}_k^d\|\|\mathcal{I}^1\|+\sum_{\substack{|\alpha|_1\leq k\\\alpha\in\mathbb{N}^d,\ \alpha\geq 1}}\bigg(\prod_{i=1}^d\|\Delta_{\alpha_i}\|\bigg)\|\mathcal{I}^1-U_{k+1-|\alpha|_1}\|.$$

Here we have $\|\mathcal{I}^1\| = 2$, $\|\mathcal{I}^1 - U_{k+1-|\alpha|_1}\| \leq \gamma_r 2^{-r(k+1-|\alpha|_1)}$, and $\|\mathcal{I}^d - \mathcal{Q}^d_k\| \leq \gamma_r \max\{2^{r+1}, \gamma_r(1+2^r)\}^{d-1} \binom{k}{d-1} 2^{-rk}$ by the induction assumption. Noting that

$$\|\Delta_{\alpha_{i}}\| \leq \|U_{\alpha_{i}} - \mathcal{I}^{1}\| + \|\mathcal{I}^{1} - U_{\alpha_{i}-1}\| \leq \gamma_{r} 2^{-r\alpha_{i}} + \gamma_{r} 2^{-r\alpha_{i}+r} = \gamma_{r} 2^{-r\alpha_{i}} (1+2^{r})$$

we obtain

$$\sum_{\substack{|\alpha|_{1} \leq k \\ \alpha \in \mathbb{N}^{d}, \ \alpha \geq 1}} \underbrace{\left(\prod_{i=1}^{d} \|\Delta_{\alpha_{i}}\|\right)}_{\leq \gamma_{r}^{d} 2^{-r|\alpha|_{1}}(1+2^{r})^{d}} \underbrace{\|\mathcal{I}^{1} - U_{k+1-|\alpha|_{1}}\|}_{\leq \gamma_{r} 2^{-r(k+1-|\alpha|_{1})}} \leq \sum_{\substack{|\alpha|_{1} \leq k \\ \alpha \in \mathbb{N}^{d}, \ \alpha \geq 1}} \gamma_{r}^{d+1} 2^{-r(k+1)}(1+2^{r})^{d}$$
$$= \binom{k}{d} \gamma_{r}^{d+1} 2^{-r(k+1)}(1+2^{r})^{d}.$$

$$\begin{split} \|\mathcal{I}^{d+1} - \mathcal{Q}_{k+1}^{d+1}\| &\leq \|\mathcal{I}^{d} - \mathcal{Q}_{k}^{d}\| \|\mathcal{I}^{1}\| + \sum_{\substack{|\alpha|_{1} \leq k \\ \alpha \in \mathbb{N}^{d}, \ \alpha \geq 1}} \left(\prod_{i=1}^{d} \|\Delta_{\alpha_{i}}\|\right) \|\mathcal{I}^{1} - U_{k+1-|\alpha|_{1}}\| \\ &\leq 2\gamma_{r} \max\{2^{r+1}, \gamma_{r}(1+2^{r})\}^{d-1} \binom{k}{d-1} 2^{-rk} + \gamma_{r}[\gamma_{r}(1+2^{r})]^{d} \binom{k}{d} 2^{-r(k+1)} \\ &\leq 2^{r+1}\gamma_{r} \max\{2^{r+1}, \gamma_{r}(1+2^{r})\}^{d-1} \binom{k}{d-1} 2^{-r(k+1)} + \gamma_{r}[\gamma_{r}(1+2^{r})]^{d} \binom{k}{d} 2^{-r(k+1)} \\ &\stackrel{(*)}{\leq} \gamma_{r} \max\{2^{r+1}, \gamma_{r}(1+2^{r})\}^{d} 2^{-r(k+1)} \left[\binom{k}{d-1} + \binom{k}{d}\right] \qquad (\text{Pascal's identity}) \\ &= \gamma_{r} \max\{2^{r+1}, \gamma_{r}(1+2^{r})\}^{d} 2^{-r(k+1)} \binom{k+1}{d} \end{split}$$

proving the assertion.

(*) Note that here $x \max\{x, y\}^{d-1} \le \max\{x, y\}^d$ for $x, y \ge 0$.

University of Mannheim

Sparse grid methods

A corollary to the previous Lemma is Smolyak's original estimate

$$\|\mathcal{I}^d - \mathcal{Q}_k^d\| \le Ck^{d-1}2^{-rk},$$

where the constant C > 0 depends on r and d.

One can relate this error bound (depending on the level k) to the number of evaluation points N = N(k, d) of the Smolyak–Clenshaw–Curtis rule Q_k^d . Recalling that the CC rules are nested, we get (cf. (3))

$$N \leq \sum_{\substack{|\alpha|_1=k\\\alpha\in\mathbb{N}^d,\ \alpha\geq\mathbf{1}}} m_{\alpha_1}\cdots m_{\alpha_d} \leq \sum_{\substack{|\alpha|_1=k\\\alpha\in\mathbb{N}^d,\ \alpha\geq\mathbf{1}}} 2^{|\alpha|_1} = 2^k \sum_{\substack{|\alpha|_1=k\\\alpha\in\mathbb{N}^d,\ \alpha\geq\mathbf{1}}} 1$$
$$= 2^k \binom{k-1}{d-1} \leq C' 2^k k^{d-1},$$

where C' > 0 is a constant that depends on d and we used $m_i \le 2^i$ as well as the Lemma on slide 9.

University of Mannheim

Sparse grid methods

For simplicity, let us write $a \leq b$ if $a \leq Cb$ for some constant C > 0.

Since $N \leq 2^k k^{d-1}$, we have $2^{-k} \leq \frac{k^{d-1}}{N}$.

Hence, the Smolyak error term can be recast as

$$\|\mathcal{I}^{d} - \mathcal{Q}_{k}^{d}\| \lesssim 2^{-rk} k^{d-1} \lesssim \frac{k^{r(d-1)}}{N^{r}} k^{d-1} = \frac{k^{(r+1)(d-1)}}{N^{r}}.$$

For sufficiently large k, we have $2^k \leq N$ and hence $k \leq \log N$; therefore

$$\|\mathcal{I}^d - \mathcal{Q}_k^d\| \lesssim rac{(\log N)^{(r+1)(d-1)}}{N^r},$$

where the implied coefficient depends on r and d. Hence, for fixed regularity r and fixed d, the method converges at the above rate as $N \rightarrow \infty$.

Polynomial exactness

$$\mathbb{P}_{k}^{d} = \left\{ \mathbb{R}^{d} \ni x \mapsto \sum_{\substack{|\beta|_{1} \leq k \\ \beta \in \mathbb{N}^{d}}} a_{\beta} x^{\beta} \in \mathbb{R}; \ a_{\beta} \in \mathbb{R} \text{ for all } \beta \in \mathbb{N}^{d} \right\}.$$

$$\bigotimes_{i=1}^{d} \mathbb{P}_{m_{i}}^{1} = \left\{ \mathbb{R}^{d} \ni (x_{1}, \dots, x_{d}) \mapsto \prod_{i=1}^{d} p_{i}(x_{i}) \in \mathbb{R}; \ p_{i} \in \mathbb{P}_{m_{i}}^{1} \text{ for } i = 1, \dots, d \right\}.$$

Lemma

The Smolyak–Clenshaw–Curtis rules satisfy $Q_k^d f = \mathcal{I}^d f$ for all polynomials

$$f \in \sum_{\substack{|\alpha|_1=k\\ \alpha\in\mathbb{N}^d}} \mathbb{P}_{m_{\alpha_1}}\otimes\cdots\otimes\mathbb{P}_{m_{\alpha_d}}.$$

Proof. By dimension-wise induction. For d = 1, the claim is reduced into

$$\mathcal{I}^1 f = U_k f$$

for all $f \in \Pi_k$. This is true since the CC rule is interpolatory.

University of Mannheim

Sparse grid methods

Suppose that the claim is true for some $d \ge 1$.

Let
$$\beta \in \mathbb{N}^{d+1}$$
 such that $|\beta|_1 = k$ and $k \ge d+1$. Define $f(x_1, \ldots, x_{d+1}) = g(x_1, \ldots, x_d) f_{d+1}(x_{d+1})$, where $g(x_1, \ldots, x_d) = f_1(x_1) \cdots f_d(x_d)$ and $f_i \in \mathbb{P}^1_{m_i}$ for $i = 1, \ldots, d+1$. Now clearly $f \in \bigotimes_{i=1}^{d+1} \mathbb{P}^1_{m_{\beta_i}}$. It is sufficient to prove the claim for the function f since linearity of the Smolyak rule implies that the claim then holds for any element in $\sum_{\alpha \in \mathbb{N}^{d+1}} \bigotimes_{i=1}^{d+1} \mathbb{P}^1_{m_{\alpha_i}}$ as well.

Using dimension recursion and the product structure of f we get

$$\mathcal{Q}_k^{d+1}f = \sum_{i=d}^{k-1} \mathcal{Q}_i^d \otimes \Delta_{k-i}f = \sum_{i=d}^{k-1} \mathcal{Q}_i^d g \cdot \Delta_{k-i}f_{d+1}.$$

If $\beta_{d+1} \leq k - i - 1$, then $m_{\beta_{d+1}} \leq m_{k-i-1} \leq m_{k-i}$ and we have $U_{k-i}f_{d+1} = U_{k-i-1}f_{d+1} = \mathcal{I}^1f_{d+1}$. Especially $\Delta_{k-i}f_{d+1} = 0$ and we can truncate the expression for \mathcal{Q}_k^{d+1} by considering summation over the indices $k - \beta_{d+1} \leq i \leq k - 1$.

Using the fact that $k = |\beta|_1$ allows us to write the rule \mathcal{Q}_k^{d+1} in the form

$$\mathcal{Q}_k^{d+1}f = \sum_{i=\beta_1+\cdots+\beta_d}^{k-1} \mathcal{Q}_i^d g \cdot \Delta_{k-i}f_{d+1}.$$

Our induction hypothesis implies that $\mathcal{I}^d g = \mathcal{Q}_i^d g$ for $\beta_1 + \cdots + \beta_d \leq i \leq k - 1$ and we achieve

$$\mathcal{Q}_{k}^{d+1}f = \sum_{i=\beta_{1}+\ldots+\beta_{d}}^{k-1} \mathcal{I}^{d}g \cdot \Delta_{k-i}f_{d+1}$$
$$= \mathcal{I}^{d}g \cdot U_{k-\beta_{1}-\cdots-\beta_{d}}f_{d+1}$$
$$= \mathcal{I}^{d}g \cdot U_{\beta_{d+1}}f_{d+1}$$
$$= \mathcal{I}^{d}g \cdot \mathcal{I}^{1}f_{d+1} = \mathcal{I}^{d+1}f$$

proving the claim.

University of Mannheim

October 14, 2019 26 / 32

Relating the polynomial exactness to the total degree m of "classical" polynomial spaces \mathbb{P}_m^d is rather technical – the explicit expression for the total degree m of exactness in terms of the dimension d and level k of a Smolyak–Clenshaw–Curtis rule \mathcal{Q}_k^d is somewhat complicated, and can be found in [Novak & Ritter (1999)].

The following (weaker) assertion, however, is true for Smolyak–Clenshaw–Curtis rules.

Theorem (Corollary 1 in [Novak & Ritter (1999)])

The Smolyak–Clenshaw–Curtis rule has (at least) a degree 2(k - d) + 1 of exactness.

Discussion

During these past two lectures, we have considered the construction and approximation properties of classical, isotropic Smolyak quadrature rules

$$\mathcal{Q}_k^d = \sum_{\substack{|lpha|_1 \leq k \ lpha \in \mathbb{N}^d}} \bigotimes_{i=1}^d \Delta_{lpha_i}.$$

We have seen that

- there exists a computationally useful "combination method" that can be used to effectively implement the isotropic Smolyak rule.
- the Smolyak–Clenshaw–Curtis rule has an error rate

$$\mathcal{O}\left(\frac{(\log N)^{(d-1)(r+1)}}{N^r}\right)$$

for functions $f \in H^r([-1,1]^s)$.

• the Smolyak–Clenshaw–Curtis rule is exact for polynomials of total degree (at least) 2(k - d) + 1.

Extensions

In practice, many of these approximation results extend to other, more general quadrature rules

$$\tilde{U}_k^{(j)}f = \sum_{i=1}^{m_k^{(j)}} w_i f(x_i) \approx \int_{\mathcal{I}_j} W_j(x) f(x) \, \mathrm{d}x, \tag{5}$$

with different pairings of intervals $\mathcal{I}_j \subseteq \mathbb{R}$ and weight functions $W_j(x) \ge 0$ (with finite moments). In this case, the Smolyak construction approximates integrals of the form

$$\int_{\mathcal{I}_1\times\cdots\times\mathcal{I}_d} W_1(x_1)\cdots W_d(x_d)f(x_1,\ldots,x_d)\,\mathrm{d} x_1\cdots\mathrm{d} x_d$$

Similar results on convergence and polynomial approximation can be obtained as long as the univariate rules (5) are interpolatory and the sequence $(m_i^{(j)})_{i=1}^{\infty}$ is imposed a sufficient growth condition. It is generally more economical to use nested univariate formulae.

University of Mannheim

Sparse grid methods

Other extensions

Depending on the application, one may be interested to consider generalized sparse grid constructions

$$\sum_{lpha \in \mathcal{I}} \bigotimes_{i=1}^d (A_{lpha_i} - A_{lpha_i-1}).$$

- The operators (A_i)_{i=1}[∞] can be replaced, e.g., by interpolation operators or projection operators. Note that the convergence rates may differ from the quadrature setting!
- In many situations, the components of your function may have different, relative importance or *anisotropy*. For example, x_1 affects the integration problem more than x_2 , x_2 affects the result more than x_3 , etc. The index set \mathcal{I} can therefore be either tailored to fit the *a priori* information of your problem, or one can use a dimensionadaptive scheme. The combination method (2) no longer works!

These approaches will be featured in the upcoming talks!

References

The combination method and fundamental error analysis:

G. Wasilkowski and H. Woźniakowski. Explicit cost bounds of algorithms for multivariate tensor product problems. *Journal of Complexity* **11**:1–56, 1995.

On the approximation properties of Smolyak–Clenshaw–Curtis rules:

- E. Novak and K. Ritter. High dimensional integration of smooth functions over cubes. *Numerische Mathematik* 75(1):79–97, 1996.
- E. Novak and K. Ritter. Simple cubature formulas with high polynomial exactness. *Constructive Approximation* 15(4):499–522, 1999.

Additional reading:

M. Holtz. Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance. Springer, Heidelberg, 2011.

University of Mannheim

Sparse grid methods