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For any multi-index o € IN? (here 0 € IN), we define |a|; = Zf’:l o and
|at|oo = maxi<i<d ;.

We consider the function spaces

O“f(x)
Ox

H(Q)= {f: Q- R, exists and is bounded in Q for all |a|ec < r}

for a fixed region @ # Q C RY. We call r the regularity of functions in
H"(2) and accompany these function spaces with the respective norms

XEQ}.

Let T: H(Q2) — R be a bounded, linear functional. The operator norm of
T is defined by

9%f(x)| .
oxe |’

[1fl|hr @) = max sup{‘
aclN
[a]oo<r

|T| == sup |TF|.

11l r @) <1

Naturally, | TF| < || T|[[|f[| () for all £ € H'(Q).
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Suppose that @ # Q C R and @ # = C R* and let S: H"(Q) — R and
T: H"(Z) — R be functionals. Suppose additionally that they admit to
representations

Sf = Za,-f(x,-) and Tf= Zbif(y,-)
i=1

i=1

for a selection of positive weights (a;)7; and (b;)7_; and vectors (x;)™,
and (y;)7_; in the domains Q and =. Now Q x = C R%+% and the tensor
product of S and T is the linear functional S® T: H'(2 x =) - R
defined by setting

(S@T)F=D Y abf(x,y)-

i=1 j=1
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During this lecture, we shall consider the sequence of univariate
Clenshaw—Curtis quadrature rules (U;)?;, which are of the form

Uif = wif(x]), feH([-1,1]9).

The it CC rule has mj-points, where m1 =landm=2"1+1i>1.
The nodes (x) and weights (w;)?"; of an mj-point CC rule have

explicit formulae

; w(j—1) .
&:—COS(ﬁ), _/6{1,‘..7m,‘}

i

1 .
i i m;(m;—2)7 J € {13 mf}
W, = W, 11_: = . _ . i
J mitl=) m-271 1-— 7?:_((””5‘_’72 2 Z T 3)/ — cos <727T’:_0711))> otherwise.

The evaluation points of the CC rules are nested: Let us denote
={x } . Then X; C Xjyq forall i > 1.
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Properties of tensor products of linear functionals

@ Noncommutative: generally S T# T ® S.
@ Associative: (S® T)@ R=S® (T ® R).
o Distributive: (S+ T)® R=S®R+ T ®R.

Theorem
Let T; be quadrature operators. Then

n

Q| :,ﬁl”T"”

i=1

in their respective operator norms.

‘If f(x,y) = g(x)h(y), then (S® T)f = Sg - Th.‘
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Definition (Smolyak quadrature rule)

Let (U;)?2, be a sequence of univariate quadrature rules in the interval
@ # | C R. We introduce the difference operators by setting

The Smolyak quadrature rule of order k in the hyperrectangle
|9 =1 x---x | is the operator

d
%= KAh. (1)

|Oé‘1§k i=1
acN?

The tensor product Ay, ® -+ - ® A, in the summand of (1) vanishes
whenever a; = 0 for some index i. In the sequel we always assume that
o >1 and hence k > d.
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Proposition (Dimension recursion)
Let k> d > 2. Then

d-1 k-1

o= ¥ (@) etim- Y oean

|1 <k—1 i=1 i=d—1
a€elNd—1 o>1

A (computationally) useful characterization:

Theorem (Combination method)

Let U; be univariate quadrature rules in the interval @ # | C R and
suppose that k > d. Then

d
- Y (T Que @
i=1

max{d,k—d+1}<|al1 <k
a€elN?, a>1

v
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Exercise. Using the formula

d

d_ Yk [ d—1
Qk— Z ( 1) (k—|a|1> < Uai

max{d,k—d+1}<|a|1<k i=1
aclN?, a>1

expand the above expression to find the Smolyak quadrature rule Q%.

Next, plug the Clenshaw—Curtis quadrature rules
Urf =f(3) and Uof = :f(0)+3F(3) + :f(1)

into the formula you obtained for Q% and derive a quadrature rule in the
form

Q3f = wif(x1) + waof (x0) + waf(x3) 4+ waf(xa) + wsf(xs),
where (w;)2_; are weights and (x;)3_; are elements in [0, 1]2.
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Solution. You should obtain (akin to last week's example)
G=Ui@U+Uel - U U.
Substituting the Clenshaw—Curtis rules yields

Q3f = 6f(3:0) +5f(3: 1) + 5F(0.2) + 5F(1.2) +3(3. 2)-
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Today, we consider the problem of approximating

wirm [0y e H(LT)
1,1

To this end, let us extend the definition of the tensor product as follows: if
Tf =31, wif(x;) for f € H"([-1,1]%), then we define

(T®19 f—ZW,/
i=1

(Id®Tf—ZW,/
i=1
(Id®15)f:/

for f € H"([—1,1]9%9).

University of Mannheim

[,171]s+d

1,1

f(xi,y
1,1

Note that ||Z9 @ T||

=|ITe1 =

IZ7NIITI
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Some essential combinatorics

Lemma

k—1 k
3 1:(d_1) ad Y 1:<d).
laj1=k la1<k
aclN?, a>1 a€clN?, a>1

Proof. The first identity follows from a combinatorial (“stars and bars")
argument. The second identity follows from

|1 <k (=d |o|1=¢ t=d
a€N?, a>1 a€lN?, a>1

where the final equality follows from the summation formula for the
diagonals of Pascal’s triangle (proof by induction and using Pascal’s
identity; omitted.) O
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-
On the distribution of Smolyak quadrature nodes

The evaluation points of Qg form the set

n(k,d) = U Xoy X - X Xy, forall k> d.
max{d,k—d+1}<|a|1<k
aelNY o>1

The elements of the set n(k, d) are the nodes of Q¢.

If the univariate rules are nested, i.e., X; C Xi11 (as is the case with CC
rules), then the nodes of Q¢ form the set

nk,d) = |J Xa X xXo, forallk>d. (3)
lor1=k
a€lN?, a>1
Sevee i) Eiieds
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Figure: Left: non-nested Smolyak—Gauss—Legendre rules Q¢

k € {5,6}. Right: nested Smolyak—Gauss—Patterson rules Q¢ for d = 2 and

k € {5,6}.
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Error analysis
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Note that
Z9F — Q¥f| < |79 — Q|| Fllr(e)-

We can estimate the worst case error of the Smolyak quadrature rule Qg
by bounding the operator norm of Z9 — Qi’.
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It is known from classical approximation theory that the sequence of
univariate CC rules satisfy

1T — Ukl < 2™ (4)
for some sequence of numbers (,),>o0.

Lemma

The Smolyak—Clenshaw—Curtis quadrature rules satisfy the bound

_ k _
179~ Qg < e max2 1+ 200 K2

Proof. By dimension-wise induction. The case d =1 is immediate
since (4) and the telescoping property imply that

1-1
=t T

k
128 = QL = |71 = U]l < 72~ < 7ymax{27+, 5, (1 + 2,)}< )2*

as desired.
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Next assume that the claim
r Ny d— k iy
179 — Q|| < 7 max{2", 7, (1 + 27)}° 1<d 1)2 ‘

holds for some d > 1. Then
I Qi =TT - QT + Qi @ T — QL]

=T -el'+ ) <(§)Aa;>®f— > (éAaf)@)Uk“—'al

[eel1 <k |y <k i=1
aeN?, a>1 aENY, a>1
d
d d 1 1
=(Z°-Q)®T + E <®Aa,> ® (T = Uks1—-jaly)-
la|1<k i=1
aeN?, a>1

Taking the operator norm

d
Iz - Qg < Iz - QT+ S (HHAa,-n)nf—uHHahH.

lal1<k i=1
aeN?, a>1
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Here we have ||| = 2, || Z' = Ujy1-jq), [l < 727 (<F11o0)and
179 — Q|| < v, max{2 1 ~,(1+2r)}d1 (dfl)Z_’k by the induction
assumption. Noting that

A0l < 0oy = T + 17 = Uyl < 727" 4+ 427" = 4,27"(1 + 27)

we obtain
d
S (HuAa,-u) 1T Ul < 35 4@tttk 4 oryd
i=1
ae|]10\;‘dl7§(521 : S»yrz—r(k-%—l—\&h) aelﬂ?ll‘},golc(Z].

<ng2-rlali (1427)d

B (5) AR EAR(CE Il
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Hence

d

Iz Qg < Iz - - S (HnAa,-H)HIl Uk o]

|1 <k i=1

aeN?, a>1

S 2'Yr max{2r+17’yr(1+2r)}d71 <dk1> 27rk+’yr[ryr(1+2r)]d (5) 2*f'(k+1)
<2y, max{2f+1,m(1+2')}"‘1<df1>2 U e+ 20) ( ) S
(%) (ki1 k k e .
< rmax{2 (14 27) 27 )[ d—1) " \d } (Pascal’s identity)

=, max{2r+17’yr(1 + 2 )} 2~ r(k+1) (k : 1)

proving the assertion. O

(%) Note that here x max{x, y}?~* < max{x, y}? for x,y > 0.
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A corollary to the previous Lemma is Smolyak's original estimate
|79 — Qf|l < Cketa,
where the constant C > 0 depends on r and d.

One can relate this error bound (depending on the level k) to the number
of evaluation points N = N(k, d) of the Smolyak—Clenshaw—Curtis rule
QY. Recalling that the CC rules are nested, we get (cf. (3))

N < Z My - My, < Z olel _ ok Z 1

lal1=k lal1=k lal1=k
a€N?, a>1 aclN?, a>1 a€clN?, a>1
_ 2k k - ]‘ < C/2kkd—1
d—-1/ — ’

where C’ > 0 is a constant that depends on d and we used m; < 2' as well
as the Lemma on slide 9.
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For simplicity, let us write a < b if a < Cb for some constant C > 0.

. d—
Since N < 2kk9=1 we have 27K < kNl.

Hence, the Smolyak error term can be recast as

kr(d—1) k(r+1)(d—1)

Id _ d < 2—rkkd—1 < kd_l — )

For sufficiently large k, we have 2k < N and hence k < log N; therefore
(|og N)(r+1)(d_1)
N ’

[FAROBS
where the implied coefficient depends on r and d. Hence, for fixed

regularity r and fixed d, the method converges at the above rate as
N — co.
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Polynomial exactness

University of Mannheim Sparse grid methods October 14, 2019 23/32



]P‘,f:{]Rdaw—) Z apx? € R; ageRforallﬂE]Nd}.

|Bl1<k
BelNd
d d
®]P}n,- = {Rd S (x1,.--,X0) — Hp,-(x,-) eR; pie ]P}nl_ for i = 1,...,d}.
i=1 i=1
Lemma

The Smolyak—Clenshaw—Curtis rules satisfy ng = Z9f for all polynomials

fe > Pp ® - QPny,.
loe|1=k
acNd

v

Proof. By dimension-wise induction. For d =1, the claim is reduced into
I'f = Uif

for all f € M. This is true since the CC rule is interpolatory.
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Suppose that the claim is true for some d > 1.

Let 3 € IN9*1 such that |3|; = k and k > d + 1. Define
(X1, Xd+1) = g(x1,y .+, Xd)fg+1(Xd+1), where
g(x1,...,xq) = A(x1) - fy(xg) and f; € PL, for i=1,....d + 1. Now
clearly f € ®7:+11 ]P}"ﬂ,-' It is sufficient to prove the claim for the function
f since linearity of the Smolyak rule implies that the claim then holds for
any element in ) |4, —« ®7:+11 IP:,lna_ as well.

acNd+1 '

Using dimension recursion and the product structure of f we get

k—1 k-1
QIttf — Z Q¢ @ Ay_if = Z Qg Dy_ifysr.
i=d i=d

If Bgy1 < k—1i—1,then mg, < myg_; 1 < my_;and we have
Uk,,'fdJrl = kaiflfd+1 = IlfdJrl. Especially Ak,,'fdJrl = 0 and we can
truncate the expression for Q‘ZH by considering summation over the
indices k — Bg11 < i< k—1.
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Using the fact that k = || allows us to write the rule Q¢ 1 in the form

k—1
Qittf = Y Qg Diifyn
i=Bit+B4

Our induction hypothesis implies that Z9g = Q9g for
b1+ -+ Bg <i< k—1and we achieve

k—1
= > I% Aifan
i=B1+...+Bq

= Idg- Uk—51—~~~—ﬁdfd+1
= 7% Uy, far
=T% I'fyp =I97'f

proving the claim. O
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Relating the polynomial exactness to the total degree m of “classical”
polynomial spaces ]Pdm is rather technical — the explicit expression for the
total degree m of exactness in terms of the dimension d and level k of a
Smolyak—Clenshaw—Curtis rule Q¢ is somewhat complicated, and can be
found in [Novak & Ritter (1999)].

The following (weaker) assertion, however, is true for
Smolyak—Clenshaw—Curtis rules.

Theorem (Corollary 1 in [Novak & Ritter (1999)])

The Smolyak—Clenshaw—Curtis rule has (at least) a degree 2(k — d) + 1 of
exactness.
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Discussion
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During these past two lectures, we have considered the construction and
approximation properties of classical, isotropic Smolyak quadrature rules

d
d _
%= Y Qo
a1 <k i=1
acN?

We have seen that

@ there exists a computationally useful “combination method” that can
be used to effectively implement the isotropic Smolyak rule.

@ the Smolyak—Clenshaw—Curtis rule has an error rate

(|Og N)(d*l)(l"i’l)
o PN

for functions f € H"([-1, 1]°).

@ the Smolyak—Clenshaw—Curtis rule is exact for polynomials of total
degree (at least) 2(k — d) + 1.
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Extensions

In practice, many of these approximation results extend to other, more
general quadrature rules

0]
. mk
097 =3 wif() = | W00 d, (5)
i=1 Zj

with different pairings of intervals Z; C R and weight functions W;(x) > 0
(with finite moments). In this case, the Smolyak construction
approximates integrals of the form

/ Wl(Xl)"- Wd(Xd)f(Xl,...,Xd)dxl-'-dXd.
I1><~~><Id

Similar results on convergence and polynomial approximation can be
obtained as long as the univariate rules (5) are interpolatory and the

sequence (m?))?il is imposed a sufficient growth condition. It is generally

more economical to use nested univariate formulae.
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Other extensions

Depending on the application, one may be interested to consider
generalized sparse grid constructions

d
Z ®(Aai - Aai—l)'

a€cl i=1

@ The operators (A;)$2; can be replaced, e.g., by interpolation
operators or projection operators. Note that the convergence rates
may differ from the quadrature setting!

@ In many situations, the components of your function may have
different, relative importance or anisotropy. For example, x; affects
the integration problem more than x», x> affects the result more than
x3, etc. The index set 7 can therefore be either tailored to fit the a
priori information of your problem, or one can use a dimension-
adaptive scheme. The combination method (2) no longer works!

These approaches will be featured in the upcoming talks!
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