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Short recap of last week
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For any multi-index α ∈ Nd (here 0 ∈ N), we define |α|1 =
∑d

i=1 αi and
|α|∞ = max1≤i≤d αi .
—
We consider the function spaces

H r (Ω)=

{
f : Ω→ R;

∂αf (x)

∂xα
exists and is bounded in Ω for all |α|∞ ≤ r

}
for a fixed region ∅ 6= Ω ⊆ Rd . We call r the regularity of functions in
H r (Ω) and accompany these function spaces with the respective norms

||f ||Hr (Ω) = max
α∈Nd

|α|∞≤r

sup

{∣∣∣∣∂αf (x)

∂xα

∣∣∣∣ ; x ∈ Ω

}
.

—

Let T : H r (Ω)→ R be a bounded, linear functional. The operator norm of
T is defined by

‖T‖ := sup
‖f ‖Hr (Ω)≤1

|Tf |.

Naturally, |Tf | ≤ ‖T‖‖f ‖Hr (Ω) for all f ∈ H r (Ω).
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Suppose that ∅ 6= Ω ⊆ Rd1 and ∅ 6= Ξ ⊆ Rd2 and let S : H r (Ω)→ R and
T : H r (Ξ)→ R be functionals. Suppose additionally that they admit to
representations

Sf =
m∑
i=1

ai f (xi ) and T f̃ =
n∑

i=1

bi f̃ (yi )

for a selection of positive weights (ai )
m
i=1 and (bi )

n
i=1 and vectors (xi )

m
i=1

and (yi )
n
i=1 in the domains Ω and Ξ. Now Ω× Ξ ⊆ Rd1+d2 and the tensor

product of S and T is the linear functional S ⊗ T : H r (Ω× Ξ)→ R

defined by setting

(S ⊗ T )f =
m∑
i=1

n∑
j=1

aibj f (xi , yj).

University of Mannheim Sparse grid methods October 14, 2019 4 / 32



During this lecture, we shall consider the sequence of univariate
Clenshaw–Curtis quadrature rules (Ui )

∞
i=1, which are of the form

Ui f =

mi∑
j=1

w i
j f (x ij ), f ∈ H r ([−1, 1]d).

The i th CC rule has mi -points, where m1 = 1 and mi = 2i−1 + 1, i > 1.
The nodes (x ij )mi

j=1 and weights (w i
j )mi

j=1 of an mi -point CC rule have
explicit formulae

x i
j = − cos

(
π(j − 1)

mi − 1

)
, j ∈ {1, . . . ,mi}

w i
j = w i

mi+1−j =


1

mi (mi−2)
, j ∈ {1,mi}

2
mi−1

(
1− cos(π(j−1))

mi (mi−2)
− 2

∑(mi−3)/2
k=1

1
4k2−1

cos

(
2πk(j−1)
mi−1

))
otherwise.

The evaluation points of the CC rules are nested: Let us denote
Xi := {x ij }

mi
j=1. Then Xi ⊂ Xi+1 for all i ≥ 1.
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Properties of tensor products of linear functionals

Noncommutative: generally S ⊗ T 6= T ⊗ S .

Associative: (S ⊗ T )⊗ R = S ⊗ (T ⊗ R).

Distributive: (S + T )⊗ R = S ⊗ R + T ⊗ R.

Theorem

Let Ti be quadrature operators. Then∥∥∥∥ n⊗
i=1

Ti

∥∥∥∥ =
n∏

i=1

‖Ti‖

in their respective operator norms.

If f (x , y) = g(x)h(y), then (S ⊗ T )f = Sg · Th.
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Definition (Smolyak quadrature rule)

Let (Ui )
∞
i=1 be a sequence of univariate quadrature rules in the interval

∅ 6= I ⊆ R. We introduce the difference operators by setting

∆0 = 0, ∆1 = U1 and ∆i+1 = Ui+1 − Ui for i = 1, 2, 3, ... .

The Smolyak quadrature rule of order k in the hyperrectangle
I d = I × · · · × I is the operator

Qd
k =

∑
|α|1≤k
α∈Nd

d⊗
i=1

∆αi
. (1)

The tensor product ∆α1 ⊗ · · · ⊗∆αd
in the summand of (1) vanishes

whenever αi = 0 for some index i . In the sequel we always assume that
α ≥ 1 and hence k ≥ d .
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Proposition (Dimension recursion)

Let k ≥ d ≥ 2. Then

Qd
k =

∑
|α|1≤k−1

α∈Nd−1, α≥1

(
d−1⊗
i=1

∆αi

)
⊗ Uk−|α|1 =

k−1∑
i=d−1

Qd−1
i ⊗∆k−i .

A (computationally) useful characterization:

Theorem (Combination method)

Let Ui be univariate quadrature rules in the interval ∅ 6= I ⊆ R and
suppose that k ≥ d . Then

Qd
k =

∑
max{d ,k−d+1}≤|α|1≤k

α∈Nd , α≥1

(−1)k−|α|1
(

d − 1
k − |α|1

) d⊗
i=1

Uαi . (2)
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Exercise. Using the formula

Qd
k =

∑
max{d ,k−d+1}≤|α|1≤k

α∈Nd , α≥1

(−1)k−|α|1
(

d − 1
k − |α|1

) d⊗
i=1

Uαi

expand the above expression to find the Smolyak quadrature rule Q2
3.

Next, plug the Clenshaw–Curtis quadrature rules

U1f = f ( 1
2 ) and U2f = 1

6 f (0) + 2
3 f ( 1

2 ) + 1
6 f (1)

into the formula you obtained for Q2
3 and derive a quadrature rule in the

form

Q2
3f = w1f (x1) + w2f (x2) + w3f (x3) + w4f (x4) + w5f (x5),

where (wi )
5
i=1 are weights and (xi )

5
i=1 are elements in [0, 1]2.
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Solution. You should obtain (akin to last week’s example)

Q2
3 = U1 ⊗ U2 + U2 ⊗ U1 − U1 ⊗ U1.

Substituting the Clenshaw–Curtis rules yields

Q2
3f = 1

6 f ( 1
2 , 0) + 1

6 f ( 1
2 , 1) + 1

6 f (0, 1
2 ) + 1

6 f (1, 1
2 ) + 1

3 f ( 1
2 ,

1
2 ).
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Today, we consider the problem of approximating

Id f :=

∫
[−1,1]d

f (y1, . . . , yd) dy1 · · · dyd , f ∈ H r ([−1, 1]d).

To this end, let us extend the definition of the tensor product as follows: if
Tf =

∑n
i=1 wi f (xi ) for f ∈ H r ([−1, 1]s), then we define

(T ⊗ Id)f =
n∑

i=1

wi

∫
[−1,1]s

f (xi , y) dy

(Id ⊗ T )f =
n∑

i=1

wi

∫
[−1,1]s

f (y , xi ) dy

(Id ⊗ Is)f =

∫
[−1,1]s+d

f (x , y) dx dy

for f ∈ H r ([−1, 1]d+s). Note that ‖Id ⊗ T‖ = ‖T ⊗ Id‖ = ‖Id‖‖T‖.
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Some essential combinatorics

Lemma ∑
|α|1=k

α∈Nd , α≥1

1 =

(
k − 1

d − 1

)
and

∑
|α|1≤k

α∈Nd , α≥1

1 =

(
k

d

)
.

Proof. The first identity follows from a combinatorial (“stars and bars”)
argument. The second identity follows from

∑
|α|1≤k

α∈Nd , α≥1

1 =
k∑
`=d

∑
|α|1=`

α∈Nd , α≥1

1 =
k∑
`=d

(
`− 1

d − 1

)
=

(
k

d

)
,

where the final equality follows from the summation formula for the
diagonals of Pascal’s triangle (proof by induction and using Pascal’s
identity; omitted.)
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On the distribution of Smolyak quadrature nodes

The evaluation points of Qd
k form the set

η(k , d) =
⋃

max{d ,k−d+1}≤|α|1≤k
α∈Nd , α≥1

Xα1 × · · · × Xαd
for all k ≥ d .

The elements of the set η(k , d) are the nodes of Qd
k .

If the univariate rules are nested, i.e., Xi ⊆ Xi+1 (as is the case with CC
rules), then the nodes of Qd

k form the set

η(k, d) =
⋃
|α|1=k

α∈Nd , α≥1

Xα1 × · · · × Xαd
for all k ≥ d . (3)
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Figure: Left: non-nested Smolyak–Gauss–Legendre rules Qd
k for d = 2 and

k ∈ {5, 6}. Right: nested Smolyak–Gauss–Patterson rules Qd
k for d = 2 and

k ∈ {5, 6}.
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Error analysis
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Note that
|Id f −Qd

k f | ≤ ‖Id −Qd
k‖‖f ‖Hr (Ω).

We can estimate the worst case error of the Smolyak quadrature rule Qd
k

by bounding the operator norm of Id −Qd
k .
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It is known from classical approximation theory that the sequence of
univariate CC rules satisfy

‖I1 − Uk‖ ≤ γr2−rk (4)

for some sequence of numbers (γr )r≥0.

Lemma

The Smolyak–Clenshaw–Curtis quadrature rules satisfy the bound

‖Id −Qd
k‖ ≤ γr max{2r+1, γr (1 + 2r )}d−1

(
k

d − 1

)
2−rk .

Proof. By dimension-wise induction. The case d = 1 is immediate
since (4) and the telescoping property imply that

‖I1−Q1
k‖ = ‖I1−Uk‖ ≤ γr2−rk ≤ γrmax{2r+1, γr (1 + 2r )}︸ ︷︷ ︸

≥1

(
k

1− 1

)
︸ ︷︷ ︸

=1

2−rk

as desired.
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Next assume that the claim

‖Id −Qd
k‖ ≤ γr max{2r+1, γr (1 + 2r )}d−1

(
k

d − 1

)
2−rk

holds for some d ≥ 1. Then

Id+1 −Qd+1
k+1 = Id ⊗ I1 −Qd

k ⊗ I1 +Qd
k ⊗ I1 −Qd+1

k+1

= (Id −Qd
k )⊗ I1 +

∑
|α|1≤k

α∈Nd , α≥1

( d⊗
i=1

∆αi

)
⊗ I1 −

∑
|α|1≤k

α∈Nd , α≥1

( d⊗
i=1

∆αi

)
⊗ Uk+1−|α|1

= (Id −Qd
k )⊗ I1 +

∑
|α|1≤k

α∈Nd , α≥1

( d⊗
i=1

∆αi

)
⊗ (I1 − Uk+1−|α|1 ).

Taking the operator norm

‖Id+1 −Qd+1
k+1‖ ≤ ‖I

d −Qd
k‖‖I1‖+

∑
|α|1≤k

α∈Nd , α≥1

( d∏
i=1

‖∆αi ‖
)
‖I1 − Uk+1−|α|1‖.
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Here we have ‖I1‖ = 2, ‖I1 − Uk+1−|α|1‖ ≤ γr2−r(k+1−|α|1), and

‖Id −Qd
k‖ ≤ γr max{2r+1, γr (1 + 2r )}d−1

( k
d−1

)
2−rk by the induction

assumption. Noting that

‖∆αi ‖ ≤ ‖Uαi − I
1‖+ ‖I1 − Uαi−1‖ ≤ γr2−rαi + γr2

−rαi+r = γr2
−rαi (1 + 2r )

we obtain

∑
|α|1≤k

α∈Nd , α≥1

( d∏
i=1

‖∆αi‖
)

︸ ︷︷ ︸
≤γdr 2−r|α|1 (1+2r )d

‖I1 − Uk+1−|α|1‖︸ ︷︷ ︸
≤γr2−r(k+1−|α|1)

≤
∑
|α|1≤k

α∈Nd , α≥1

γd+1
r 2−r(k+1)(1 + 2r )d

=

(
k

d

)
γd+1
r 2−r(k+1)(1 + 2r )d .
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Hence

‖Id+1 −Qd+1
k+1‖ ≤ ‖Id −Qd

k‖‖I1‖+
∑
|α|1≤k

α∈Nd , α≥1

( d∏
i=1

‖∆αi ‖
)
‖I1 − Uk+1−|α|1‖

≤ 2γr max{2r+1, γr (1 + 2r )}d−1

(
k

d − 1

)
2−rk + γr [γr (1 + 2r )]d

(
k

d

)
2−r(k+1)

≤ 2r+1γr max{2r+1, γr (1 + 2r )}d−1

(
k

d − 1

)
2−r(k+1) + γr [γr (1 + 2r )]d

(
k

d

)
2−r(k+1)

(∗)
≤ γr max{2r+1, γr (1 + 2r )}d2−r(k+1)

[(
k

d − 1

)
+

(
k

d

)]
(Pascal’s identity)

= γr max{2r+1, γr (1 + 2r )}d2−r(k+1)

(
k + 1

d

)

proving the assertion.

(∗) Note that here x max{x , y}d−1 ≤ max{x , y}d for x , y ≥ 0.
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A corollary to the previous Lemma is Smolyak’s original estimate

‖Id −Qd
k‖ ≤ Ckd−12−rk ,

where the constant C > 0 depends on r and d .

One can relate this error bound (depending on the level k) to the number
of evaluation points N = N(k, d) of the Smolyak–Clenshaw–Curtis rule
Qd

k . Recalling that the CC rules are nested, we get (cf. (3))

N ≤
∑
|α|1=k

α∈Nd , α≥1

mα1 · · ·mαd
≤

∑
|α|1=k

α∈Nd , α≥1

2|α|1 = 2k
∑
|α|1=k

α∈Nd , α≥1

1

= 2k
(
k − 1

d − 1

)
≤ C ′2kkd−1,

where C ′ > 0 is a constant that depends on d and we used mi ≤ 2i as well
as the Lemma on slide 9.
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For simplicity, let us write a . b if a ≤ Cb for some constant C > 0.

Since N . 2kkd−1, we have 2−k . kd−1

N .

Hence, the Smolyak error term can be recast as

‖Id −Qd
k‖ . 2−rkkd−1 .

k r(d−1)

N r
kd−1 =

k(r+1)(d−1)

N r
.

For sufficiently large k , we have 2k ≤ N and hence k ≤ logN; therefore

‖Id −Qd
k‖ .

(logN)(r+1)(d−1)

N r
,

where the implied coefficient depends on r and d . Hence, for fixed
regularity r and fixed d , the method converges at the above rate as
N →∞.
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Polynomial exactness
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Pd
k =

{
Rd 3 x 7→

∑
|β|1≤k
β∈Nd

aβx
β ∈ R; aβ ∈ R for all β ∈ Nd

}
.

d⊗
i=1

P1
mi

=

{
Rd 3 (x1, . . . , xd) 7→

d∏
i=1

pi (xi ) ∈ R; pi ∈ P1
mi

for i = 1, . . . , d

}
.

Lemma

The Smolyak–Clenshaw–Curtis rules satisfy Qd
k f = Id f for all polynomials

f ∈
∑
|α|1=k
α∈Nd

Pmα1
⊗ · · · ⊗ Pmαd

.

Proof. By dimension-wise induction. For d = 1, the claim is reduced into

I1f = Uk f

for all f ∈ Πk . This is true since the CC rule is interpolatory.
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Suppose that the claim is true for some d ≥ 1.

Let β ∈ Nd+1 such that |β|1 = k and k ≥ d + 1. Define
f (x1, . . . , xd+1) = g(x1, . . . , xd)fd+1(xd+1), where
g(x1, . . . , xd) = f1(x1) · · · fd(xd) and fi ∈ P1

mi
for i = 1, . . . , d + 1. Now

clearly f ∈
⊗d+1

i=1 P
1
mβi

. It is sufficient to prove the claim for the function

f since linearity of the Smolyak rule implies that the claim then holds for
any element in

∑
|α|1=k
α∈Nd+1

⊗d+1
i=1 P

1
mαi

as well.

Using dimension recursion and the product structure of f we get

Qd+1
k f =

k−1∑
i=d

Qd
i ⊗∆k−i f =

k−1∑
i=d

Qd
i g ·∆k−i fd+1.

If βd+1 ≤ k − i − 1, then mβd+1
≤ mk−i−1 ≤ mk−i and we have

Uk−i fd+1 = Uk−i−1fd+1 = I1fd+1. Especially ∆k−i fd+1 = 0 and we can
truncate the expression for Qd+1

k by considering summation over the
indices k − βd+1 ≤ i ≤ k − 1.
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Using the fact that k = |β|1 allows us to write the rule Qd+1
k in the form

Qd+1
k f =

k−1∑
i=β1+···+βd

Qd
i g ·∆k−i fd+1.

Our induction hypothesis implies that Idg = Qd
i g for

β1 + · · ·+ βd ≤ i ≤ k − 1 and we achieve

Qd+1
k f =

k−1∑
i=β1+...+βd

Idg ·∆k−i fd+1

= Idg · Uk−β1−···−βd fd+1

= Idg · Uβd+1
fd+1

= Idg · I1fd+1 = Id+1f

proving the claim.
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Relating the polynomial exactness to the total degree m of “classical”
polynomial spaces Pd

m is rather technical – the explicit expression for the
total degree m of exactness in terms of the dimension d and level k of a
Smolyak–Clenshaw–Curtis rule Qd

k is somewhat complicated, and can be
found in [Novak & Ritter (1999)].

The following (weaker) assertion, however, is true for
Smolyak–Clenshaw–Curtis rules.

Theorem (Corollary 1 in [Novak & Ritter (1999)])

The Smolyak–Clenshaw–Curtis rule has (at least) a degree 2(k − d) + 1 of
exactness.
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Discussion
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During these past two lectures, we have considered the construction and
approximation properties of classical, isotropic Smolyak quadrature rules

Qd
k =

∑
|α|1≤k
α∈Nd

d⊗
i=1

∆αi
.

We have seen that

there exists a computationally useful “combination method” that can
be used to effectively implement the isotropic Smolyak rule.

the Smolyak–Clenshaw–Curtis rule has an error rate

O
(

(logN)(d−1)(r+1)

N r

)
for functions f ∈ H r ([−1, 1]s).

the Smolyak–Clenshaw–Curtis rule is exact for polynomials of total
degree (at least) 2(k − d) + 1.
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Extensions

In practice, many of these approximation results extend to other, more
general quadrature rules

Ũ
(j)
k f =

m
(j)
k∑

i=1

wi f (xi ) ≈
∫
Ij
Wj(x)f (x)dx , (5)

with different pairings of intervals Ij ⊆ R and weight functions Wj(x) ≥ 0
(with finite moments). In this case, the Smolyak construction
approximates integrals of the form∫

I1×···×Id
W1(x1) · · ·Wd(xd)f (x1, . . . , xd)dx1 · · · dxd .

Similar results on convergence and polynomial approximation can be
obtained as long as the univariate rules (5) are interpolatory and the

sequence (m
(j)
i )∞i=1 is imposed a sufficient growth condition. It is generally

more economical to use nested univariate formulae.
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Other extensions

Depending on the application, one may be interested to consider
generalized sparse grid constructions∑

α∈I

d⊗
i=1

(Aαi − Aαi−1).

The operators (Ai )
∞
i=1 can be replaced, e.g., by interpolation

operators or projection operators. Note that the convergence rates
may differ from the quadrature setting!

In many situations, the components of your function may have
different, relative importance or anisotropy. For example, x1 affects
the integration problem more than x2, x2 affects the result more than
x3, etc. The index set I can therefore be either tailored to fit the a
priori information of your problem, or one can use a dimension-
adaptive scheme. The combination method (2) no longer works!

These approaches will be featured in the upcoming talks!
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