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Introduction

Example

In Crazy town, even the weather is strange.

If today is sunny, then tomorrow is sunny with probability 0.7.

If today is rainy, then tomorrow is rainy with probability 0.8.

What is the proportion of sunny days to rainy days?

Let the space of possible states be S = {x1, x2}, where

x1 sunny day
x2 rainy day

We can collect all different transitions xi → xj between days into an array:

tomorrow/
today x1 x2
x1 0.7 0.3
x2 0.2 0.8
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tomorrow/
today x1 x2
x1 0.7 0.3
x2 0.2 0.8

⇒ P :=

[
p11 p12
p21 p22

]
:=

[
0.7 0.3
0.2 0.8

]

Let πt1 ∈ [0, 1] be the probability that day t is sunny and let πt2 = 1− πt1
be the probability that day t is rainy.

Day t + 1 is sunny with probability

πt+1
1 = p11π

t
1 + p21π

t
2. (“law of total probability”)

Day t + 1 is rainy with probability

πt+1
2 = p12π

t
1 + p22π

t
2. (“law of total probability”)

In matrix form,

πT
t+1 = πT

t P, where πT
t = [πt1, π

t
2].
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tomorrow/
today x1 x2
x1 0.7 0.3
x2 0.2 0.8

⇒ P :=

[
p11 p12
p21 p22

]
:=

[
0.7 0.3
0.2 0.8

]
It is easy to diagonalize P as

P =

[
1 −3/2
1 1

] [
1 0
0 1/2

] [
2/5 3/5
−2/5 2/5

]
(1)

so we obtain the limiting probability distribution

lim
t→∞

πT
t = lim

k→∞
πT
0 P

k =
[
2/5, 3/5

]
regardless of the initial state πT

0 = [π01, π
0
2], π01 + π02 = 1.

As we will see, it is not a coincidence that this is also an equilibrium state
[2/5, 3/5] = [2/5, 3/5]P, i.e., a left-eigenvector, of P. Therefore, the fact
that this equilibrium appears on the right-hand side modular matrix in
equation (1) is no coincidence either! Why? :)
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Discrete time Markov chains
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Discrete time Markov chains

Let S = {x1, . . . , xn} be a finite set of possible states.1 A sequence
(Xt)

∞
t=0 of random variables is called a Markov chain if the value of any

Xt+1 depends only on the previous state Xt :

Pr(Xt+1 = x |Xt , . . . ,X0) = Pr(Xt+1 = x |Xt).

Furthermore, we assume that the Markov process is time homogeneous,
i.e., the transition probabilities do not change over time.

1The definition naturally extends to countably infinite state spaces, but here we only
consider the finite case.
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We can tabulate all possible transition probabilities as

pi ,j = Pr(Xt+1 = xj |Xt = xi ) ∈ [0, 1]

and we require that pi ,1 + · · ·+ pi ,n = 1 for all i ∈ {1, . . . , n} to conserve
the probability. Because of time homogeneity, these values do not change
as time increases.

The n × n matrix containing pi ,j as its (i , j) element,

P =

p1,1 · · · p1,n
...

. . .
...

pn,1 · · · pn,n

 ,
is called a (row) stochastic matrix2 and it can be used to nicely encapsulate
the properties of a Markov chain. Note that each row sums to 1.

2Sometimes it is also convenient to consider column stochastic matrices PT, where
each column sums to 1.
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Let (Xt)
∞
t=0 be a discrete time Markov chain over a finite state space. Let

the PMF of Xt be given by the vector πT
t = [πt1, . . . , π

t
n]. Then the PMF

πT
t+1 = [πt+1

1 , . . . , πt+1
n ] of Xt+1 is given by the equations

πt+1
1 = p1,1π

t
1 + · · ·+ pn,1π

t
n,

...

πt+1
n = p1,nπ

t
1 + · · ·+ pn,nπ

t
n,

(“law of total probability”)

i.e., πT
t+1 = πT

t P.

In particular, the kth state can be obtained via power iteration:

πT
1 = πT

0 P

πT
2 = πT

1 P = πT
0 P

2,

πT
3 = πT

2 P = πT
0 P

3,

...

πT
k = πT

k−1P = πT
0 P

k .
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Some elementary properties of stochastic matrices

If P is a stochastic matrix, then Pk is a stochastic matrix for all
k ∈ Z+.

Let P = (pi ,j)i ,j with
∑

j pi ,j = 1 for all j . Let us check that this condition

holds for P2:∑
j

(P2)i ,j =
∑
j

∑
k

pi ,kpk,j =
∑
k

pi ,k
∑
j

pk,j = 1.

The case of general k ∈ Z+ is proven by induction.

Let ∆n = {[x1, . . . , xn] ∈ Rn |
∑n

i=1 xi = 1, xi ≥ 0 for all 1 ≤ i ≤ n}.
If xT ∈ ∆n, then xTP ∈ ∆n for any (row) stochastic n × n matrix P.

Let P = (pi ,j)i ,j with
∑

j pi ,j = 1 for all j . This is proved analogously to
the previous case:∑

i

(xTP)i =
∑
i

∑
k

xkpk,i =
∑
k

xk
∑
i

pk,i = 1.

Applications of matrix computations Power method and its applications II Spring 2018 9 / 34



In the following, let P be an n × n (row) stochastic matrix corresponding
to some Markov chain with n states.

Definition

A Markov chain is said to have a limiting probability distribution if
πT
∞ = limk→∞ πT

0 P
k exists for any initial distribution π0.

The limiting probability distribution is the ultimate distribution that the
random variables (Xt)

∞
t=0 tend toward – making the Markov chain “forget”

its starting state. It can be used to describe the fraction of time that the
Markov process stays on each state as t →∞.

Definition

The probability distribution π satisfying πT = πTP is called the
equilibrium state.

That is, the equilibrium state is a probability distribution which remains
unchanged in the Markov process.
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The equilibrium state

Proposition

An equilibrium state πT = πTP always exists, where πT = [π1, . . . , πn] is
a nonnegative vector normalized such that π1 + · · ·+ πn = 1.

To see this, let us consider the eigenvalue problem
λπT = πTP ⇔ PTπ = λπ.

1 is an eigenvalue of PT.

Let 1 = [1, . . . , 1]T. 1 is obviously an eigenvalue of the matrix P since
P1 = [p1,1 + · · ·+ p1,n, . . . , pn,1 + · · ·+ pn,n]T = 1.

Since det(P − λI ) = det(PT − λI ), the matrices P and PT have the same
eigenvalues (but generally not the same eigenvectors!).
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All eigenvalues of PT satisfy |λ| ≤ 1.

We note that it is sufficient to consider the eigenvalues of P. Normalize
the eigenvector x so that index i corresponds to the maximal component
xi = 1 and |xj | ≤ 1 for all j 6= i . Then we obtain from Px = λx that∑

j

pi ,jxj = λxi ⇔ pi ,ixi +
∑
j 6=i

pi ,jxj = λxi ⇔ λ− pi ,i =
∑
j 6=i

pi ,jxj .

Taking absolute values on both sides and using the triangle inequality, we
obtain

|λ− pi ,i | ≤
∑
j 6=i

pi ,j = 1− pi ,i .

Since |λ− pi ,i | ≥ ||λ| − |pi ,i || ≥ |λ| − pi ,i , we have

|λ| ≤ 1

and the claim follows since λ was arbitrary.
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Thus, we know that there exists some π ∈ Rn such that πT = πTP.

To see why its elements are nonnegative, we must invoke the spectral
theory of nonnegative matrices.

Theorem (Weak Perron–Frobenius theorem3)

Let A be an n × n matrix with nonnegative entries. Then

There exists a positive eigenvalue λ1 > 0 such that for all other
eigenvalues λ of A it holds that |λ| ≤ λ1.
The eigenvector x corresponding to λ1 contains nonnegative entries.

By the previous discussion, λ1 = 1 for column stochastic PT and thus the
eigenvector π = [π1, . . . , πn]T corresponding to it must have nonnegative
entries. Naturally, the eigenvector π can be normalized s.t.
π1 + · · ·+ πn = 1 allowing interpretation as a probability distribution.

3Notice that the weak formulation does not imply that the largest eigenvalue is
simple! Thus, without additional assumptions, it leaves open the possibility of multiple
equilibra!
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Hence an equilibrium state πT = πTP always exists for a Markov chain.

On the other hand, if the limiting probability distribution
πT
∞ = limk→∞ πT

0 P
k exists, then it is an equilibrium state: πT

∞ = πT
∞P.

However:

A Markov chain may have an equilibrium but no limiting distribution
independent of the starting state, e.g., P=[0,1;1,0].

Multiple equilibra ↔ different starting states either converge to
different limits or may not converge at all.
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The interesting questions are:

When is the equilibrium solution πT = πTP unique?
→ This means that IF the power method converges, then it must
converge toward the unique limiting/equilibrium state.

When does the power iteration converge?
→ For a system of sufficient size (as we shall see with the Google
PageRank), calling eig (or eigs) may not be reasonable. Instead,
iterative solvers must be used to compute the limiting distribution
and, ideally, one wants to be sure that the iterative scheme converges.

In essence, our Markov chain needs to be “sufficiently nice” for both of
these points to hold.
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The n × n matrix A is called primitive if there exists some k ∈ Z+ such
that (Ak)i ,j > 0 for all i , j ∈ {1, . . . , n}. Note that here we do not assume
that A is stochastic!

Uniqueness of the equilibrium vector can be ensured, e.g., under the
following circumstances.

Theorem (Perron)

A real primitive matrix P has

a unique eigenvector r with all positive entries,

the eigenvalue λ corresponding to r is dominant and has multiplicity
one.

In addition, the Collatz–Wielandt formula holds:

λ = max
x∈Rn

x≥0

min
i :xi>0

(Ax)i
xi

= min
x∈Rn

x≥0

max
i :xi>0

(Ax)i
xi

.

Applications of matrix computations Power method and its applications II Spring 2018 16 / 34



Power iteration (Collatz–Wielandt)

When the matrix A is primitive, the Collatz–Wielandt formula implies a
stronger version of the power method!
(See [Golub and Van Loan 4th edition, Exercise P7.3.4] and [Varga].)

Algorithm

Let A be a primitive n × n matrix.
Start with an initial guess x0 ∈ Rn

+.
for k = 1, 2, . . . do

Set yk = xk−1/‖xk−1‖;
Compute xk = Ayk ;

Set λk = max1≤i≤n
(xk )i
(yk )i

and λk = min1≤i≤n
(xk )i
(yk )i

;

end for
Then λ0 ≤ λ1 ≤ · · · ≤ λ ≤ · · · ≤ λ1 ≤ λ0. In addition, (λk , x

k)→ (λ, x)
and (λk , x

k)→ (λ, x), where (λ, x) is the dominant eigenpair of A.
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Definition

Let P be a stochastic matrix. P is called regular if there exists k ∈ Z+

such that (Pk)i ,j > 0 for all i , j ∈ {1, . . . , n}.

In other words, if there is a nonzero probability to reach each state xj from
any state xi in k steps, then the stochastic matrix P is called regular.
→ A regular matrix P is primitive.
→ A regular matrix P satisfies the conditions of Perron’s theorem and
therefore there exists a unique equilibrium π such that

πT = lim
k→∞

π0
TPk

for any πT
0 = [π01, . . . , π

0
n] ∈ Rn

+ such that π01 + · · ·+ π0n = 1.

Remark. The assumption of primitivity can be relaxed. If the Markov
chain is irreducible and aperiodic, then the [Perron–Frobenius theorem]
asserts the uniqueness of the equilibrium solution. However, we omit this
discussion.
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PageRank
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Five-page internet

1

2

3

5

4

Let us consider an internet of five pages, which link
to each other according to the directed graph on the
left.

First, we create an adjacency matrix A to represent
this network. We set Ai ,j = 1 if page j has a link to
page i and Ai ,j = 0 otherwise. In this case,

A =


0 1 0 0 0
0 0 0 1 1
1 1 0 0 0
1 0 1 0 1
1 0 0 0 0

 .

We wish to associate a ranking ri to page i in such
a way that ri > rj indicates that page i is more
popular than page j .
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Probabilistic interpretation

Let’s think of the ranking problem in terms of Markov chains.

In the following, let n denote the number of webpages on the internet.

We make the following modeling assumptions:

Links from page i to itself are ignored.

Multiple links to page j from page i are ignored.

One click of a hyperlink is modeled as one time step in the discrete time
Markov process. We can replace the adjacency matrix with a column
stochastic matrix P by normalizing column j with the number of outbound
links from page j :

Pi ,j = Ai ,j/
∑
i

Ai ,j .
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Five-page internet

1

2

3

5

4

Adjacency matrix:

A =


0 1 0 0 0
0 0 0 1 1
1 1 0 0 0
1 0 1 0 1
1 0 0 0 0

 .

Column stochastic matrix:

P =


0 1/2 0 0 0
0 0 0 1 1/2

1/3 1/2 0 0 0
1/3 0 1 0 1/2
1/3 0 0 0 0

 .
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PageRank

If the equilibrium solution
Pr = r

is unique, it can be used to model the proportion of visits to each page on
the internet.

Definition (PageRank)

The i th component of the equilibrium vector r is called the PageRank of
page i .

Recall that the equilibrium solution is the dominant eigenvector of the
Markov matrix P → In Matlab, [r,~]=eigs(P,1)
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The indexed Web contains more than 4 billion webpages.

Luckily, the adjacency matrix A and, in consequence, the system P are
sparse. Since we are only interested in the dominant eigenpair, the power
method provides excellent grounds for determining the equilibrium
distribution!

However, there are certain network configurations where the power
method fails to converge.
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Dangling node (P matrix fails to be stochastic)

What if site 4 decides it wants to get all of the visitors and removes the
link to site 2 from its webpage?

1

2

3

5

4

Site 4 is now a
dangling node with no
outgoing links.

Adjacency and Markov matrices:

A =


0 1 0 0 0
0 0 0 0 1
1 1 0 0 0
1 0 1 0 1
1 0 0 0 0

 ,

P =


0 1/2 0 0 0
0 0 0 0 1/2

1/3 1/2 0 0 0
1/3 0 1 0 1/2
1/3 0 0 0 0

 .

Power method tends to 0! A
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Other potential issues

Reducible network

1

2

3

5

4

Different inital states may or may not

converge to different distributions. It is

possible that the system has multiple

equilibra.

Periodic network

1

2

3

5

4

P5x = x; we return to the same state

infinitely many times. Power iteration may

not converge.

These examples are overly simplified; it is enough that only one part of the
network contains a loop/is separated from rest of the network.
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How does Google do it?

Suppose that we are given an arbitrary adjacency matrix A. For a large
enough system, A is likely to be reducible, periodic, or nonstochastic.

The random surfer model: with some fixed probability α ∈ [0, 1], a
visitor on page i clicks a link directing to page j ; conversely, with
probability 1− α the visitor visits another page at random with transition
probability 1/n.

In addition, if the site is a dangling node, then the visitor continues to an
arbitrary webpage with probability 1/n.

Enter the Google matrix:

Gi ,j =

{
α

Ai,j∑
i Ai,j

+ (1− α) 1n , if
∑

i Ai ,j 6= 0,
1
n otherwise.

As the damping parameter, Google uses the value α = 0.85.
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Gi ,j =

{
α

Ai,j∑
i Ai,j

+ (1− α) 1n , if
∑

i Ai ,j 6= 0,
1
n otherwise,

α = 0.85.

The matrix G is a column stochastic matrix by construction → the
dominant eigenvector r is such that G r = r.

The matrix G is positive → by Perron’s theorem, r ∈ Rn
+, and we can

normalize it so that ‖r‖1 = 1 is the unique equilibrium probability
distribution of G r = r.

1 is a simple eigenvalue → for all eigenvalues λ 6= 1 of G , |λ| < 1 →
the power method converges (see also the note on the
Collatz–Wielandt formula).

Actually, it can even be shown for the second largest eigenvalue of G
that |λ2| ≤ α → the power method converges at rate O(αk) (cf.,
e.g., [Langville and Meyer, Theorem 4.7.1]).
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Computational remarks

Gi ,j =

{
α

Ai,j∑
i Ai,j

+ (1− α) 1n , if
∑

i Ai ,j 6= 0,
1
n otherwise,

α = 0.85.

The Google matrix can be written as

G = αP +
α

n
1vT +

1− α
n

,

where P is an n × n matrix such that

Pi ,j =

{
Ai,j∑
i Ai,j

, if
∑

i Ai ,j 6= 0

0 otherwise,

1 = [1, . . . , 1]T is an n-vector of ones, and v ∈ {0, 1}n is a Boolean vector,
whose j th component is 1 if and only if

∑
i Ai ,j = 0.
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Now the action of the matrix

G = αP +
α

n
1vT +

1− α
n

can be expressed by

Gx = αPx +
α

n
(vTx)1 +

1− α
n

n∑
i=1

xi , x = [x1, . . . , xn]T,

where P is sparse so computing Px is possible and (vTx) is now simply a
dot product of a sparse vector v against x.
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Google PageRank algorithm

Algorithm

Input: sparse P ∈ Rn×n, v ∈ {0, 1}n, and α ∈ [0, 1] as above.
Initialize r0 = 1/n.
for k = 1, 2, . . . do

Compute rk = αPrk−1 + α
n (vTrk−1)1 + 1−α

n ;

end for
Since G is a column stochastic matrix, each iteration is automatically
normalized as ‖G r‖1 = 1 for any ‖r‖1 = 1.

Applications of matrix computations Power method and its applications II Spring 2018 31 / 34



Bibliography

G. Golub and C. Van Loan. Matrix Computations, 4th edition, Johns
Hopkins University Press, 2013.

R. A. Horn and C. R. Johnson. Matrix Analysis, 1st paperback edition,
Cambridge University Press, 1985.

A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond: The
Science of Search Engine Rankings. Princeton University Press, 2006.

D. Poole. Linear Algebra: A Modern Introduction. Thomson
Brooks/Cole, 2005.

R. S. Varga. Matrix Iterative Analysis, Springer Berlin Heidelberg,
1999.

Applications of matrix computations Power method and its applications II Spring 2018 32 / 34



Appendix
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Let P be a row stochastic n × n matrix. Then there exists a vector
π ∈ Rn with nonnegative entries satisfying πT = πTP.

Let us denote the standard Euclidean n-simplex by

∆n :=

{
[x1, . . . , xn] ∈ Rn |

n∑
i=1

xi = 1, xi ≥ 0 for all 1 ≤ i ≤ n

}
.

Define the mapping
T (xT) = xTP.

Now we note that xT ∈ ∆n ⇒ xTP ∈ ∆n. Hence we have the following:

T : ∆n → ∆n is continuous as a (bounded) linear mapping.

The set ∆n is convex and compact.

∴ [Brouwer’s fixed-point theorem] implies that there exists xT0 ∈ ∆n such
that xT0 = T (xT0 ) = xT0 P.

This essentially proves the weak Perron–Frobenius theorem for stochastic
matrices!
Applications of matrix computations Power method and its applications II Spring 2018 34 / 34

https://en.wikipedia.org/wiki/Brouwer_fixed-point_theorem

