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The content of this lecture follows roughly the material presented in the
following monographs.

J. Kaipio and E. Somersalo. Statistical and Computational Inverse
Problems. 2005.

J. L. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems
with Practical Applications. 2012.

ASTRA Toolbox for 2D and 3D tomography:
https://www.astra-toolbox.com/

https://www.astra-toolbox.com/
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Radon transform in R2

Let L be a straight line in R2.

Any line in R2 can be parameterized as

L = {sω + tω⊥; t ∈ R} for some s ∈ R and ω ∈ S1,

where ω⊥ ⊥ ω.

Writing ω :=

[
cos θ
sin θ

]
, we get

L = L(s, θ) =

{
s

[
cos θ
sin θ

]
+ t

[
sin θ
− cos θ

]
; t ∈ R

}
, s ∈ R and θ ∈ [0, π).

The Radon transform of a continuous function f : R2 → R on L is defined
as

Rf (L) =

∫
L
f (x) |dx | =

∫ ∞
−∞

f (s cos θ + t sin θ, s sin θ − t cos θ) dt.



-10 -5 0 5 10

0

5

10

15

20



-10 -5 0 5 10

0

5

10

15

20



-10 -5 0 5 10

0

5

10

15

20



Radon transform in R2

Let L be a straight line in R2.

Any line in R2 can be parameterized as
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The Radon transform of a continuous function f : R2 → R on L is defined
as

Rf (L) =

∫
L
f (x) |dx | =

∫ ∞
−∞
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Let f be a nonnegative function modeling X-ray attenuation (density)
inside a physical body.

Beer–Lambert law:

Rf (L) = log
I0
I1
.



Let us consider the computational
domain [−1, 1]2. We divide this
region into n × n pixels and
approximate the density by a
piecewise constant function with
constant value

fi ,j in pixel Pi ,j

for i , j ∈ {1, . . . , n}.

Pi ,j := {(x , y); −1 + 2 j−1
n < x < −1 + 2 j

n , −1 + 2 i−1
n < y < −1 + 2 i

n}



It is convenient to reshape the
matrix/image (fi ,j) into a vector x of
length n2 so that

x(j−1)n+i = fi ,j , i , j ∈ {1, . . . , n}.

The image on the left illustrates the
new numbering corresponding to the
pixels.

Note that x = f(:) and f = reshape(x,n,n).



Measurement model

Let us consider a measurement setup where we take X-ray measurements
of an object using X-rays L(s1, θ), . . . , L(sK , θ) taken at angles
θ ∈ {θ1, . . . , θM}. The total number of X-rays is Q = MK .

For brevity, let us write L(m−1)K+k := L(sk , θm) for k ∈ {1, . . . ,K} and
m ∈ {1, . . . ,M}.

The measurement model is

y =


∫
L1
f (x)|dx |

...∫
LQ

f (x)|dx |

+ ε ≈


∑n2

j=1 A1,jxj
...∑n2

j=1 AQ,jxj

+ ε = Ax + ε,

where A ∈ RQ×n2 and Ai ,j is the distance that ray Li travels through pixel
j . Here, x is a vector containing the (piecewise constant) densities within
each pixel and ε is measurement noise.



L(m−1)K+k =

{
sk

[
cos θm
sin θm

]
+ t

[
sin θm
− cos θm

]
; t ∈ R

}
,

k = 1, . . . ,K ,
m = 1, . . . ,M.



Pixel-by-pixel construction of the tomography matrix A



Case cos θ = 0 and sin θ = 1:[
xd
yd

]
≤
[
s cos θ + t sin θ
s sin θ − t cos θ

]
<

[
xu
yu

]
⇔
[
xd
yd

]
≤
[
t
s

]
<

[
xu
yu

]
.

The distance that ray Lm travels through pixel k is

Am,k =

∫
Lm

χk |dx | =

∫
xd<t≤xu
yd≤s<yu

dt =

{
xu − xd if yd ≤ s < yu,

0 otherwise.

N.B. In here and in the following, χk = χk (x) denotes the characteristic function of the kth

pixel. In the above illustration, the pixel is denoted by the rectangle [xd, xu)× [yd, yu).



Case cos θ = 1 and sin θ = 0:[
xd
yd

]
≤
[
s cos θ + t sin θ
s sin θ − t cos θ

]
<

[
xu
yu

]
⇔
[
xd
yd

]
≤
[
s
−t

]
<

[
xu
yu

]
⇔
[
xd
−yu

]
<

[
s
t

]
≤
[
xu
−yd

]
.

The distance that ray Lm travels through pixel k is

Am,k =

∫
Lm

χk |dx | =

∫
−yu<t≤−yd
xd<s≤xu

dt =

{
yu − yd if xd < s ≤ xu,

0 otherwise.



Case cos θ > 0:[
xd
yd

]
<

[
s cos θ + t sin θ
s sin θ − t cos θ

]
<

[
xu
yu

]
⇔
[ xd−s cos θ

sin θ
s sin θ−yu

cos θ

]
<

[
t
t

]
<

[ xu−s cos θ
sin θ

s sin θ−yd
cos θ

]
.

The distance that ray Lm travels through pixel k is

Am,k =

∫
Lm

χk |dx | =

∫
max
{

xd−s cos θ

sin θ
, s sin θ−yu

cos θ

}
<t<min

{
xu−s cos θ

sin θ
,
s sin θ−yd

cos θ

} dt

=

(
min

{
xu − s cos θ

sin θ
,
s sin θ − yd

cos θ

}
−max

{
xd − s cos θ

sin θ
,
s sin θ − yu

cos θ

})
+

.



Case cos θ < 0:[
xd
yd

]
<

[
s cos θ + t sin θ
s sin θ − t cos θ

]
<

[
xu
yu

]
⇔
[
xd−s cos θ

sin θ
s sin θ − yu

]
<

[
t

t cos θ

]
<

[
xu−s cos θ

sin θ
s sin θ − yd

]
!⇔
[ xd−s cos θ

sin θ
s sin θ−yd

cos θ

]
<

[
t
t

]
<

[ xu−s cos θ
sin θ

s sin θ−yu
cos θ

]
.

The distance that ray Lm travels through pixel k is

Am,k =

∫
Lm

χk |dx | =

∫
max
{

xd−s cos θ

sin θ
,
s sin θ−yd

cos θ

}
<t<min

{
xu−s cos θ

sin θ
, s sin θ−yu

cos θ

} dt

=

(
min

{
xu − s cos θ

sin θ
,
s sin θ − yu

cos θ

}
−max

{
xd − s cos θ

sin θ
,
s sin θ − yd

cos θ

})
+

.



Discussion

Tomography problems can be classified into three brackets based on the
nature of the measurement data:

Full angle tomography

– Sufficient number of measurements from all angles → not a very
ill-posed problem.

Limited angle tomography

– Data collected from a restricted angle of view → reconstructions very
sensitive to measurement error and it is not possible to reconstruct the
object perfectly (even with noiseless data). Applications include, e.g.,
dental imaging.

Sparse data tomography

– The data consist of only a few projection images, possibly from any
direction → extremely ill-posed inverse problem and prior knowledge
necessary for successful reconstructions. (E.g., minimizing a patient’s
radiation dose.)


