Introduction to X-ray tomography

Vesa Kaarnioja

LUT School of Engineering Science

January 28, 2021

The content of this lecture follows roughly the material presented in the following monographs.

- J. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems. 2005.
- J. L. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems with Practical Applications. 2012.

ASTRA Toolbox for 2D and 3D tomography: https://www.astra-toolbox.com/

Radon transform in \mathbb{R}^2

Let *L* be a straight line in \mathbb{R}^2 .

Any line in \mathbb{R}^2 can be parameterized as

$$L = \{ s\omega + t\omega^{\perp}; t \in \mathbb{R} \}$$
 for some $s \in \mathbb{R}$ and $\omega \in S^1$,

where $\omega^{\perp} \perp \omega$.

Radon transform in \mathbb{R}^2

Let *L* be a straight line in \mathbb{R}^2 .

Any line in \mathbb{R}^2 can be parameterized as

$$L = \{s\omega + t\omega^{\perp}; t \in \mathbb{R}\}$$
 for some $s \in \mathbb{R}$ and $\omega \in S^1$,

where $\omega^{\perp} \perp \omega$.

Writing
$$\omega = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
, we get
 $L = L(s, \theta) = \left\{ s \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} + t \begin{bmatrix} \sin \theta \\ -\cos \theta \end{bmatrix}; \ t \in \mathbb{R} \right\}, \quad s \in \mathbb{R} \text{ and } \theta \in [0, \pi).$

The Radon transform of a continuous function $f: \mathbb{R}^2 \to \mathbb{R}$ on L is defined as

$$\mathcal{R}f(L) = \int_{L} f(\mathbf{x}) |\mathrm{d}\mathbf{x}| = \int_{-\infty}^{\infty} f(s\cos\theta + t\sin\theta, s\sin\theta - t\cos\theta) \,\mathrm{d}t.$$

Let f be a nonnegative function modeling X-ray attenuation (density) inside a physical body.

Beer-Lambert law:

$$\mathcal{R}f(L) = \log \frac{I_0}{I_1}.$$

$f_{10,1}$	$f_{10,2}$	$f_{10,3}$	$f_{10,4}$	$f_{10,5}$	$f_{10,6}$	$f_{10,7}$	$f_{10,8}$	$f_{10,9}$	$f_{10,10}$
$f_{9,1}$	$f_{9,2}$	$f_{9,3}$	$f_{9,4}$	$f_{9,5}$	$f_{9,6}$	$f_{9,7}$	$f_{9,8}$	$f_{9,9}$	$f_{9,10}$
$f_{8,1}$	$f_{8,2}$	$f_{8,3}$	$f_{8,4}$	$f_{8,5}$	$f_{8,6}$	$f_{8,7}$	$f_{8,8}$	$f_{8,9}$	$f_{8,10}$
$f_{7,1}$	$f_{7,2}$	$f_{7,3}$	$f_{7,4}$	$f_{7,5}$	$f_{7,6}$	$f_{7,7}$	$f_{7,8}$	$f_{7,9}$	$f_{7,10}$
$f_{6,1}$	$f_{6,2}$	$f_{6,3}$	$f_{6,4}$	$f_{6,5}$	$f_{6,6}$	$f_{6,7}$	$f_{6,8}$	$f_{6,9}$	$f_{6,10}$
$f_{5,1}$	$f_{5,2}$	$f_{5,3}$	$f_{5,4}$	$f_{5,5}$	$f_{5,6}$	$f_{5,7}$	$f_{5,8}$	$f_{5,9}$	$f_{5,10}$
$f_{4,1}$	$f_{4,2}$	$f_{4,3}$	$f_{4,4}$	$f_{4,5}$	$f_{4,6}$	$f_{4,7}$	$f_{4,8}$	$f_{4,9}$	$f_{4,10}$
$f_{3,1}$	$f_{3,2}$	$f_{3,3}$	$f_{3,4}$	$f_{3,5}$	$f_{3,6}$	$f_{3,7}$	$f_{3,8}$	$f_{3,9}$	$f_{3,10}$
$f_{2,1}$	$f_{2,2}$	$f_{2,3}$	$f_{2,4}$	$f_{2,5}$	$f_{2,6}$	$f_{2,7}$	$f_{2,8}$	$f_{2,9}$	$f_{2,10}$
$f_{1,1}$	$f_{1,2}$	$f_{1,3}$	$f_{1,4}$	$f_{1,5}$	$f_{1,6}$	$f_{1,7}$	$f_{1,8}$	$f_{1,9}$	$f_{1,10}$

Let us consider the computational domain $[-1, 1]^2$. We divide this region into $n \times n$ pixels and approximate the density by a piecewise constant function with constant value

$$f_{i,j}$$
 in pixel $P_{i,j}$

for $i, j \in \{1, ..., n\}$.

 $P_{i,j} := \{(x,y); \ -1 + 2\frac{j-1}{n} < x < -1 + 2\frac{j}{n}, \ -1 + 2\frac{j-1}{n} < y < -1 + 2\frac{j}{n}\}$

x_{91}	x_{92}	x_{93}	x_{94}	x_{95}	x_{96}	<i>x</i> ₉₇	<i>x</i> ₉₈	<i>x</i> ₉₉	x_{100}
x_{81}	x_{82}	<i>x</i> ₈₃	x_{84}	x_{85}	x_{86}	<i>x</i> ₈₇	<i>x</i> ₈₈	<i>x</i> ₈₉	x_{90}
x_{71}	x_{72}	<i>x</i> ₇₃	x_{74}	x_{75}	x_{76}	<i>x</i> ₇₇	<i>x</i> ₇₈	<i>x</i> ₇₉	x_{80}
x_{61}	x_{62}	x_{63}	x_{64}	x_{65}	x_{66}	x_{67}	x_{68}	x_{69}	<i>x</i> ₇₀
x_{51}	x_{52}	x_{53}	x_{54}	x_{55}	x_{56}	x_{57}	x_{58}	x_{59}	x_{60}
x_{41}	x_{42}	x_{43}	x_{44}	x_{45}	x_{46}	x_{47}	x_{48}	x_{49}	x_{50}
x_{31}	x_{32}	x_{33}	x_{34}	x_{35}	x_{36}	x_{37}	x_{38}	x_{39}	x_{40}
x_{21}	x_{22}	x_{23}	x_{24}	x_{25}	x_{26}	x_{27}	x_{28}	x_{29}	x_{30}
x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	x_{17}	x_{18}	x_{19}	x_{20}
x_1	x_2	x_3	$\overline{x_4}$	x_5	x_6	x_7	x_8	x_9	x_{10}

It is convenient to reshape the matrix/image $(f_{i,j})$ into a vector x of length n^2 so that

$$x_{(j-1)n+i} = f_{i,j}, \quad i,j \in \{1,\ldots,n\}.$$

The image on the left illustrates the new numbering corresponding to the pixels.

Note that x = f(:) and f = reshape(x,n,n).

Measurement model

Let us consider a measurement setup where we take X-ray measurements of an object using X-rays $L(s_1, \theta), \ldots, L(s_K, \theta)$ taken at angles $\theta \in \{\theta_1, \ldots, \theta_M\}$. The total number of X-rays is Q = MK.

For brevity, let us write $L_{(m-1)K+k} := L(s_k, \theta_m)$ for $k \in \{1, \dots, K\}$ and $m \in \{1, \dots, M\}$.

The measurement model is

$$y = \begin{bmatrix} \int_{L_1} f(\mathbf{x}) |\mathrm{d}\mathbf{x}| \\ \vdots \\ \int_{L_Q} f(\mathbf{x}) |\mathrm{d}\mathbf{x}| \end{bmatrix} + \varepsilon \approx \begin{bmatrix} \sum_{j=1}^{n^2} A_{1,j} x_j \\ \vdots \\ \sum_{j=1}^{n^2} A_{Q,j} x_j \end{bmatrix} + \varepsilon = Ax + \varepsilon,$$

where $A \in \mathbb{R}^{Q \times n^2}$ and $A_{i,j}$ is the distance that ray L_i travels through pixel j. Here, x is a vector containing the (piecewise constant) densities within each pixel and ε is measurement noise.

$$L_{(m-1)K+k} = \left\{ s_k \begin{bmatrix} \cos \theta_m \\ \sin \theta_m \end{bmatrix} + t \begin{bmatrix} \sin \theta_m \\ -\cos \theta_m \end{bmatrix}; \ t \in \mathbb{R} \right\}, \quad \substack{k = 1, \dots, K, \\ m = 1, \dots, M.}$$

$$\theta = 0, \qquad \theta = 0.349066 \qquad \theta = 0.698132$$

$$\theta = 1.0472 \qquad \theta = 1.39626 \qquad \theta = 1.74533$$

$$\theta = 1.74533 \qquad \theta = 1.74533$$

$$\theta = 2.0944 \qquad \theta = 2.44346 \qquad \theta = 2.79253$$

$$\theta = 2.79253 \qquad \theta = 2.79253$$

Pixel-by-pixel construction of the tomography matrix A

$$A_{m,k} = \int_{L_m} \chi_k \left| \mathrm{d} \mathbf{x} \right| = \int_{\substack{x_\mathrm{d} < t \le x_\mathrm{u} \\ y_\mathrm{d} \le \mathbf{s} < y_\mathrm{u}}} \mathrm{d} t = \begin{cases} x_\mathrm{u} - x_\mathrm{d} & \text{if } y_\mathrm{d} \le \mathbf{s} < y_\mathrm{u}, \\ 0 & \text{otherwise.} \end{cases}$$

N.B. In here and in the following, $\chi_k = \chi_k(\mathbf{x})$ denotes the characteristic function of the k^{th} pixel. In the above illustration, the pixel is denoted by the rectangle $[x_d, x_u) \times [y_d, y_u)$.

$$A_{m,k} = \int_{L_m} \chi_k \left| \mathrm{d} \mathbf{x} \right| = \int_{\substack{-y_u < t \le -y_d \\ x_d < \mathbf{s} \le x_u}} \mathrm{d} t = \begin{cases} y_u - y_d & \text{if } x_d < \mathbf{s} \le x_u, \\ 0 & \text{otherwise.} \end{cases}$$

Discussion

Tomography problems can be classified into three brackets based on the nature of the measurement data:

- Full angle tomography
 - Sufficient number of measurements from all angles \rightarrow not a very ill-posed problem.
- Limited angle tomography
 - Data collected from a restricted angle of view \rightarrow reconstructions very sensitive to measurement error and it is not possible to reconstruct the object perfectly (even with noiseless data). Applications include, e.g., dental imaging.
- Sparse data tomography
 - The data consist of only a few projection images, possibly from any direction \rightarrow extremely ill-posed inverse problem and prior knowledge necessary for successful reconstructions. (E.g., minimizing a patient's radiation dose.)