Introduction to X-ray tomography

Vesa Kaarnioja

LUT School of Engineering Science

January 28, 2021

The content of this lecture follows roughly the material presented in the following monographs.
J. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems. 2005.
國 J. L. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems with Practical Applications. 2012.

ASTRA Toolbox for 2D and 3D tomography:
https://www.astra-toolbox.com/

Parallel-beam X-ray tomography

Parallel-beam X-ray tomography

Parallel-beam X-ray tomography

Parallel-beam X-ray tomography

Parallel-beam X-ray tomography

Parallel-beam X-ray tomography

Radon transform in \mathbb{R}^{2}

Let L be a straight line in \mathbb{R}^{2}.
Any line in \mathbb{R}^{2} can be parameterized as

$$
L=\left\{s \omega+t \omega^{\perp} ; t \in \mathbb{R}\right\} \quad \text { for some } s \in \mathbb{R} \text { and } \omega \in S^{1}
$$

where $\omega^{\perp} \perp \omega$.

Radon transform in \mathbb{R}^{2}

Let L be a straight line in \mathbb{R}^{2}.
Any line in \mathbb{R}^{2} can be parameterized as

$$
L=\left\{s \omega+t \omega^{\perp} ; t \in \mathbb{R}\right\} \quad \text { for some } s \in \mathbb{R} \text { and } \omega \in S^{1}
$$

where $\omega^{\perp} \perp \omega$.
Writing $\omega=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$, we get

$$
L=L(s, \theta)=\left\{s\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]+t\left[\begin{array}{c}
\sin \theta \\
-\cos \theta
\end{array}\right] ; t \in \mathbb{R}\right\}, \quad s \in \mathbb{R} \text { and } \theta \in[0, \pi) .
$$

The Radon transform of a continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ on L is defined as

$$
\mathcal{R} f(L)=\int_{L} f(\boldsymbol{x})|\mathrm{d} \boldsymbol{x}|=\int_{-\infty}^{\infty} f(s \cos \theta+t \sin \theta, s \sin \theta-t \cos \theta) \mathrm{d} t
$$

Let f be a nonnegative function modeling X -ray attenuation (density) inside a physical body.

Beer-Lambert law:

$$
\mathcal{R} f(L)=\log \frac{I_{0}}{I_{1}} .
$$

$f_{10,1}$	$f_{10,2}$	$f_{10,3}$	$f_{10,4}$	$f_{10,5}$	$f_{10,6}$	$f_{10,7}$	$f_{10,8}$	$f_{10,9}$	$f_{10,10}$
$f_{9,1}$	$f_{9,2}$	$f_{9,3}$	$f_{9,4}$	$f_{9,5}$	$f_{9,6}$	$f_{9,7}$	$f_{9,8}$	$f_{9,9}$	$f_{9,10}$
$f_{8,1}$	$f_{8,2}$	$f_{8,3}$	$f_{8,4}$	$f_{8,5}$	$f_{8,6}$	$f_{8,7}$	$f_{8,8}$	$f_{8,9}$	$f_{8,10}$
$f_{7,1}$	$f_{7,2}$	$f_{7,3}$	$f_{7,4}$	$f_{7,5}$	$f_{7,6}$	$f_{7,7}$	$f_{7,8}$	$f_{7,9}$	$f_{7,10}$
$f_{6,1}$	$f_{6,2}$	$f_{6,3}$	$f_{6,4}$	$f_{6,5}$	$f_{6,6}$	$f_{6,7}$	$f_{6,8}$	$f_{6,9}$	$f_{6,10}$
$f_{5,1}$	$f_{5,2}$	$f_{5,3}$	$f_{5,4}$	$f_{5,5}$	$f_{5,6}$	$f_{5,7}$	$f_{5,8}$	$f_{5,9}$	$f_{5,10}$
$f_{4,1}$	$f_{4,2}$	$f_{4,3}$	$f_{4,4}$	$f_{4,5}$	$f_{4,6}$	$f_{4,7}$	$f_{4,8}$	$f_{4,9}$	$f_{4,10}$
$f_{3,1}$	$f_{3,2}$	$f_{3,3}$	$f_{3,4}$	$f_{3,5}$	$f_{3,6}$	$f_{3,7}$	$f_{3,8}$	$f_{3,9}$	$f_{3,10}$
$f_{2,1}$	$f_{2,2}$	$f_{2,3}$	$f_{2,4}$	$f_{2,5}$	$f_{2,6}$	$f_{2,7}$	$f_{2,8}$	$f_{2,9}$	$f_{2,10}$
$f_{1,1}$	$f_{1,2}$	$f_{1,3}$	$f_{1,4}$	$f_{1,5}$	$f_{1,6}$	$f_{1,7}$	$f_{1,8}$	$f_{1,9}$	$f_{1,10}$

Let us consider the computational domain $[-1,1]^{2}$. We divide this region into $n \times n$ pixels and approximate the density by a piecewise constant function with constant value

$$
f_{i, j} \text { in pixel } P_{i, j}
$$

for $i, j \in\{1, \ldots, n\}$.
$P_{i, j}:=\left\{(x, y) ;-1+2 \frac{j-1}{n}<x<-1+2 \frac{j}{n},-1+2 \frac{i-1}{n}<y<-1+2 \frac{i}{n}\right\}$

x_{91}	x_{92}	x_{93}	x_{94}	x_{95}	x_{96}	x_{97}	x_{98}	x_{99}	x_{100}
x_{81}	x_{82}	x_{83}	x_{84}	x_{85}	x_{86}	x_{87}	x_{88}	x_{89}	x_{90}
x_{71}	x_{72}	x_{73}	x_{74}	x_{75}	x_{76}	x_{77}	x_{78}	x_{79}	x_{80}
x_{61}	x_{62}	x_{63}	x_{64}	x_{65}	x_{66}	x_{67}	x_{68}	x_{69}	x_{70}
x_{51}	x_{52}	x_{53}	x_{54}	x_{55}	x_{56}	x_{57}	x_{58}	x_{59}	x_{60}
x_{41}	x_{42}	x_{43}	x_{44}	x_{45}	x_{46}	x_{47}	x_{48}	x_{49}	x_{50}
x_{31}	x_{32}	x_{33}	x_{34}	x_{35}	x_{36}	x_{37}	x_{38}	x_{39}	x_{40}
x_{21}	x_{22}	x_{23}	x_{24}	x_{25}	x_{26}	x_{27}	x_{28}	x_{29}	x_{30}
x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	x_{17}	x_{18}	x_{19}	x_{20}
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}

It is convenient to reshape the matrix/image $\left(f_{i, j}\right)$ into a vector x of length n^{2} so that

$$
x_{(j-1) n+i}=f_{i, j}, \quad i, j \in\{1, \ldots, n\} .
$$

The image on the left illustrates the new numbering corresponding to the pixels.

Note that $\mathrm{x}=\mathrm{f}(:)$ and $\mathrm{f}=$ reshape $(\mathrm{x}, \mathrm{n}, \mathrm{n})$.

Measurement model

Let us consider a measurement setup where we take X -ray measurements of an object using X-rays $L\left(s_{1}, \theta\right), \ldots, L\left(s_{K}, \theta\right)$ taken at angles $\theta \in\left\{\theta_{1}, \ldots, \theta_{M}\right\}$. The total number of X-rays is $Q=M K$.

For brevity, let us write $L_{(m-1) K+k}:=L\left(s_{k}, \theta_{m}\right)$ for $k \in\{1, \ldots, K\}$ and $m \in\{1, \ldots, M\}$.

The measurement model is

$$
y=\left[\begin{array}{c}
\int_{L_{1}} f(\boldsymbol{x})|\mathrm{d} \boldsymbol{x}| \\
\vdots \\
\int_{L_{Q}} f(\boldsymbol{x})|\mathrm{d} \boldsymbol{x}|
\end{array}\right]+\varepsilon \approx\left[\begin{array}{c}
\sum_{j=1}^{n^{2}} A_{1, j} x_{j} \\
\vdots \\
\sum_{j=1}^{n^{2}} A_{Q, j} x_{j}
\end{array}\right]+\varepsilon=A x+\varepsilon
$$

where $A \in \mathbb{R}^{Q \times n^{2}}$ and $A_{i, j}$ is the distance that ray L_{i} travels through pixel j. Here, x is a vector containing the (piecewise constant) densities within each pixel and ε is measurement noise.

$$
L_{(m-1) K+k}=\left\{s_{k}\left[\begin{array}{c}
\cos \theta_{m} \\
\sin \theta_{m}
\end{array}\right]+t\left[\begin{array}{c}
\sin \theta_{m} \\
-\cos \theta_{m}
\end{array}\right] ; t \in \mathbb{R}\right\}, \begin{aligned}
& k=1, \ldots, K, \\
& m=1, \ldots, M .
\end{aligned}
$$

$\theta=1.0472$

$\theta=2.0944$

Pixel-by-pixel construction of the tomography matrix A
Case $\cos \theta=0$ and $\sin \theta=1$:

$$
\left[\begin{array}{l}
x_{\mathrm{d}} \\
y_{\mathrm{d}}
\end{array}\right] \leq\left[\begin{array}{l}
s \cos \theta+t \sin \theta \\
s \sin \theta-t \cos \theta
\end{array}\right]<\left[\begin{array}{l}
x_{\mathrm{u}} \\
y_{\mathrm{u}}
\end{array}\right]
$$

$$
\Leftrightarrow\left[\begin{array}{l}
x_{\mathrm{d}} \\
y_{\mathrm{d}}
\end{array}\right] \leq\left[\begin{array}{l}
t \\
s
\end{array}\right]<\left[\begin{array}{l}
x_{\mathrm{u}} \\
y_{\mathrm{u}}
\end{array}\right] .
$$

The distance that ray L_{m} travels through pixel k is

$$
A_{m, k}=\int_{L_{m}} \chi_{k}|\mathrm{~d} \boldsymbol{x}|=\int_{\substack{x_{\mathrm{d}}<t \leq x_{\mathrm{u}} \\ y_{\mathrm{d}} \leq s<y_{\mathrm{u}}}} \mathrm{~d} t= \begin{cases}x_{\mathrm{u}}-x_{\mathrm{d}} & \text { if } y_{\mathrm{d}} \leq s<y_{\mathrm{u}} \\ 0 & \text { otherwise }\end{cases}
$$

N.B. In here and in the following, $\chi_{k}=\chi_{k}(x)$ denotes the characteristic function of the $k^{\text {th }}$ pixel. In the above illustration, the pixel is denoted by the rectangle $\left[x_{d}, x_{u}\right) \times\left[y_{\mathrm{d}}, y_{\mathrm{u}}\right)$.
Case $\cos \theta=1$ and $\sin \theta=0$:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{\mathrm{d}} \\
y_{\mathrm{d}}
\end{array}\right] \leq\left[\begin{array}{l}
s \cos \theta+t \sin \theta \\
s \sin \theta-t \cos \theta
\end{array}\right]<\left[\begin{array}{l}
x_{\mathrm{u}} \\
y_{\mathrm{u}}
\end{array}\right]} \\
& \Leftrightarrow\left[\begin{array}{c}
x_{\mathrm{d}} \\
y_{\mathrm{d}}
\end{array}\right] \leq\left[\begin{array}{c}
s \\
-t
\end{array}\right]<\left[\begin{array}{c}
x_{\mathrm{u}} \\
y_{\mathrm{u}}
\end{array}\right] \\
& \Leftrightarrow\left[\begin{array}{c}
x_{\mathrm{d}} \\
-y_{\mathrm{u}}
\end{array}\right]<\left[\begin{array}{c}
s \\
t
\end{array}\right] \leq\left[\begin{array}{c}
x_{\mathrm{u}} \\
-y_{\mathrm{d}}
\end{array}\right] .
\end{aligned}
$$

The distance that ray L_{m} travels through pixel k is

$$
A_{m, k}=\int_{L_{m}} \chi_{k}|\mathrm{~d} \boldsymbol{x}|=\int_{\substack{-y_{\mathrm{u}}<t \leq-y_{\mathrm{d}} \\ x_{\mathrm{d}}<s \leq x_{\mathrm{u}}}} \mathrm{~d} t= \begin{cases}y_{\mathrm{u}}-y_{\mathrm{d}} & \text { if } x_{\mathrm{d}}<s \leq x_{\mathrm{u}} \\ 0 & \text { otherwise }\end{cases}
$$

The distance that ray L_{m} travels through pixel k is

$$
\begin{aligned}
& A_{m, k}=\int_{L_{m}} \chi_{k}|\mathrm{~d} \boldsymbol{x}|=\underset{\max \left\{\frac{x_{\mathrm{d}}-s \cos \theta}{\sin \theta}, \frac{s \sin \theta-y_{\mathrm{u}}}{\cos \theta}\right\}<t<\min \left\{\frac{x_{u}-s \cos \theta}{\sin \theta}, \frac{s \sin \theta-y_{\mathrm{d}}}{\cos \theta}\right\}}{\mathrm{d}} \mathrm{~d} \\
& =\left(\min \left\{\frac{x_{\mathrm{u}}-s \cos \theta}{\sin \theta}, \frac{s \sin \theta-y_{\mathrm{d}}}{\cos \theta}\right\}-\max \left\{\frac{x_{\mathrm{d}}-s \cos \theta}{\sin \theta}, \frac{s \sin \theta-y_{\mathrm{u}}}{\cos \theta}\right\}\right)_{+}
\end{aligned}
$$

Case $\cos \theta<0$:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{\mathrm{d}} \\
y_{\mathrm{d}}
\end{array}\right]<\left[\begin{array}{l}
s \cos \theta+t \sin \theta \\
s \sin \theta-t \cos \theta
\end{array}\right]<\left[\begin{array}{l}
x_{\mathrm{u}} \\
y_{\mathrm{u}}
\end{array}\right]} \\
& \Leftrightarrow\left[\begin{array}{c}
\frac{x_{\mathrm{d}}-s \cos \theta}{\sin \theta} \\
s \sin \theta-y_{\mathrm{u}}
\end{array}\right]<\left[\begin{array}{c}
t \\
t \cos \theta
\end{array}\right]<\left[\begin{array}{c}
\frac{x_{\mathrm{u}}-s \cos \theta}{\sin \theta} \\
s \sin \theta-y_{\mathrm{d}}
\end{array}\right] \\
& \Leftrightarrow!\left[\begin{array}{l}
\frac{x_{\mathrm{d}}-s \cos \theta}{\sin \theta} \\
\frac{s \sin \theta-y_{\mathrm{d}}}{\cos \theta}
\end{array}\right]<\left[\begin{array}{l}
t \\
t
\end{array}\right]<\left[\begin{array}{l}
\frac{x_{\mathrm{u}}-s \cos \theta}{\sin \theta} \\
\frac{s \sin \theta-y_{\mathrm{u}}}{\cos \theta}
\end{array}\right] .
\end{aligned}
$$

The distance that ray L_{m} travels through pixel k is

$$
\begin{aligned}
& A_{m, k}=\int_{L_{m}} \chi_{k}|\mathrm{~d} \boldsymbol{x}|= \\
& \max \left\{\frac{x_{\mathrm{d}}-\operatorname{sos} \theta}{\sin \theta}, \frac{s \sin \theta-y_{\mathrm{d}}}{\cos \theta}\right\}<t<\min \left\{\frac{x_{\mathrm{u}}-s \cos \theta}{\sin \theta}, \frac{s \sin \theta-y_{\mathrm{u}}}{\cos \theta}\right\} \\
& \mathrm{cos} t \\
& =\left(\min \left\{\frac{x_{\mathrm{u}}-s \cos \theta}{\sin \theta}, \frac{s \sin \theta-y_{\mathrm{u}}}{\cos \theta}\right\}-\max \left\{\frac{x_{\mathrm{d}}-s \cos \theta}{\sin \theta}, \frac{s \sin \theta-y_{\mathrm{d}}}{\cos \theta}\right\}\right)_{+}
\end{aligned}
$$

Discussion

Tomography problems can be classified into three brackets based on the nature of the measurement data:

- Full angle tomography
- Sufficient number of measurements from all angles \rightarrow not a very ill-posed problem.
- Limited angle tomography
- Data collected from a restricted angle of view \rightarrow reconstructions very sensitive to measurement error and it is not possible to reconstruct the object perfectly (even with noiseless data). Applications include, e.g., dental imaging.
- Sparse data tomography
- The data consist of only a few projection images, possibly from any direction \rightarrow extremely ill-posed inverse problem and prior knowledge necessary for successful reconstructions. (E.g., minimizing a patient's radiation dose.)

