
Numerical methods for uncertainty quantification

Vesa Kaarnioja
vesa.kaarnioja@lut.fi

Fall 2020
LUT University

LUT University Numerical methods for UQ Fall 2020 1 / 27

vesa.kaarnioja@lut.fi


We often consider problems such as the elliptic PDE{
−∇ · (a(x)∇u(x)) = f (x) for x ∈ D,

u(x) = g(x) for x ∈ ∂D.

We may be interested in a variety of things: the (forward) solution u, a
quantity of interest G (u), finding an optimal control f to calibrate the
state u, or recovering a from available measurement data.

In practice, many of the associated quantities (diffusion coefficient a, the
source term f , the boundary data g , or even the domain D) may not be
perfectly known.

This has led to the study of problems where we model these uncertainties
using random variables → uncertainty quantification for PDEs.
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Let (Ω, Γ,P) be a probability space. A useful model problem to consider is{
−∇ · (a(x , ω)∇u(x , ω)) = f (x) for x ∈ D, (a.e.) ω ∈ Ω,

u(x , ω) = 0 for x ∈ ∂D, (a.e.) ω ∈ Ω,

where the diffusion coefficient a(·, ω) is random. In consequence, the
solution u(·, ω) is a random function/field.

In order to analyze u(·, ω), some approaches might be:

Monte Carlo → slow convergence rate.

Approximations based on lower order moments → poor accuracy.

In certain problems (such as the PDE above) the dependence of u on a is
smooth. Spectral methods such as the stochastic Galerkin method and
stochastic collocation, not to mention quasi-Monte Carlo methods, take
advantage of this fact and can be used to obtain higher-order convergence.
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Notations and preliminaries
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Generalized Polynomial Chaos (gPC) expansion

[Xiu and Karniadakis (2002)] A consequence of the generalized
Cameron–Martin theorem is that:

Any random process with finite variance can be expanded using
orthogonal polynomials.

A general second-order random process X (ω) can be represented as

X (ω) = c0I0 +
∞∑

i1=1

ci1 I1(ξi1(ω)) +
∞∑

i1=1

i1∑
i2=1

ci1,i2 I2(ξi1(ω), ξi2(ω))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ci1,i2,i3 I3(ξi1(ω), ξi2(ω), ξi3(ω))

· · · ,

where In(ξi1 , . . . , ξin) denotes the Wiener–Askey polynomial chaos of order
n in terms of the random vector ξ = (ξi1 , . . . , ξin).
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In particular, for u ∈ L2
P(Ω),

u(ω) =
∞∑
j=0

c̃jΨj(ξ). (1)

Here, there is a one-to-one correspondence between the functions
In(ξi1 , . . . , ξin) and Ψj(ξ).

It will be convenient to identify the random field with

u ≡ u(ξ1, ξ2, . . .),

i.e., we treat it as a function of the random variables ξ1, ξ2, . . .
Warning. The random variables ξj are uncorrelated, but in the non-Gaussian case not necessarily

independent. Since spectral methods generally rely on ξj being mutually independent, a

customary approach is to assume that the representation (1) is valid with satisfactory accuracy

using mutually independent random variables (we will be implicitly guilty of this when passing

onto the analysis of the parametric PDE problem). This kind of transformation can be achieved

using, e.g., the Rosenblatt transformation or introducing suitable auxiliary probability density

functions [Babuška et al. (2007)].

LUT University Numerical methods for UQ Fall 2020 6 / 27



In practice, we use a truncated gPC expansion (both in dimension and the
number of terms). Furthermore, note that E[u] = c̃0 and
Var[u] =

∑
k≥1 c̃

2
kE[Ψ2

k ].

If the random variables ξj are independent, we can represent the
polynomial chaos using tensorized orthogonal polynomials. Let
F := {ν ∈ N∞0 ; |supp(ν)| <∞} denote the set of all finitely supported
multi-indices, with support supp(ν) := {i ∈ N; νi 6= 0}. Then

X (ω) =
∑
ν∈F

cνΨν(ξ), (2)

where

Ψν(ξ) =
∏

j∈supp(ν)

Ψj(ξj). (3)

The polynomials Ψj can be chosen according to the distribution of the
random variables ξj ; see the Askey scheme on the next page.
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Table: The Askey scheme for certain continuous random variables. If the random
variables ξ = (ξ1, ξ2, . . .) in (2) are i.i.d., then the factors Ψj(ξj) in (3) should be
chosen according to this table.

Random variables ξj Polynomial basis {Ψj(ξj)}j≥0 Support

Gaussian Hermite polynomials (−∞,∞)
gamma Laguerre polynomials [0,∞)
beta Jacobi polynomials [a, b]
uniform Legendre polynomials [a, b]
arcsine Chebyshev polynomials (1st kind) [a, b]

Each polynomial in the Askey scheme forms a complete basis in the
Hilbert space determined by its corresponding support.
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Example (Legendre polynomials supported on [−1/2, 1/2]†)

By carrying out the Gram–Schmidt procedure on the monomial basis

(1, x , x2, . . . , xn) with respect to 〈p, q〉 =
∫ 1/2
−1/2 p(x)q(x) dx , we obtain

L0(x) = 1,

L1(x) = x − 〈L0, x〉
〈L0, L0〉

L0 = x −

∫ 1/2
−1/2 x dx∫ 1/2
−1/2 dx

· 1 = x ,

L2(x) = x2 − 〈L0, x
2〉

〈L0, L0〉
L0 −

〈L1, x
2〉

〈L1, L1〉
L1 = x2 −

∫ 1/2
−1/2 x

2 dx∫ 1/2
−1/2 dx

−

∫ 1/2
−1/2 x

3 dx∫ 1/2
−1/2 x

2 dx
x

= x2 − 1
12 ,

L3(x) = x3 − 3
20x , L4(x) = x4 − 3

14x
2 + 3

560 , . . .

These are the (monic) Legendre polynomials supported on [−1/2, 1/2].

†The “standard” Legendre polynomials are defined on [−1, 1] and usually denoted Pn.
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Let 〈p, q〉 =
∫
p(x)q(x) dµ(x), where µ is a positive measure with finite

moments (e.g., dµ(x) = ρ(x) dx where ρ is the density associated with
one of the polynomials in the Askey scheme). All (monic) orthogonal
polynomials associated with dµ admit to a three-term recurrence relation

p0(x) = 1, p1(x) = (x − α1)p0(x),

pk+1(x) = (x − αk+1)pk(x)− βk+1pk−1(x),

where

αk+1 =
〈xpk , pk〉
〈pk , pk〉

and βk+1 =
〈pk , pk〉
〈pk−1, pk−1〉

.

Example (Legendre polynomials supported on [−1/2, 1/2])

αk = 0 ∀k and βk =
(k − 1)2

16k2 − 32k + 12
, k ≥ 2.

Example (Hermite polynomials)

αk = 0 ∀k and βk =
k − 1

2
, k ≥ 2.
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Note that the three-term recurrence given on the previous page does not
automatically give orthonormal polynomials. For example, the orthonormal
Legendre polynomials on [−1/2, 1/2] can be obtained by

L̂0(x) =
L0(x)√
〈L0, L0〉

= 1,

L̂1(x) =
L1(x)√
〈L1, L1〉

= 2
√

3x ,

L̂2(x) =
L2(x)√
〈L2, L2〉

= 6
√

5x2 −
√

5

2
,

L̂3(x) =
L3(x)√
〈L3, L3〉

= 20
√

7x3 − 3
√

7x ,

L̂4(x) =
L4(x)√
〈L4, L4〉

= 210x4 − 45x2 +
9

8
,

and so on.
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Karhunen–Loève expansion

Let a(x , ω) be a random field with mean

a(x) =

∫
Ω
a(x , ω)dP(ω), x ∈ D,

and a (continuous) symmetric, positive definite covariance

K (x , x ′) =

∫
Ω

(a(x , ω)− a(x))(a(x ′, ω)− a(x ′))dP(ω).

Mercer’s theorem: the covariance operator C : L2(D)→ L2(D)

(Cu)(x) =

∫
D
K (x , x ′)u(x ′)dx ′, x ∈ D,

is compact. Hence, there exists a countable sequence of eigenvalues
{λk}k≥1 and corresponding eigenfunctions {ψk}k≥1 satisfying
Cψk = λkψk such that λ1 ≥ λ2 ≥ · · · ≥ 0 for k ≥ 1 and λk → 0 and the
eigenfunctions form an orthonormal basis for L2(D).
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The Karhunen–Loève (KL) expansion of random field a(x , ω) can be
written as

a(x , ω) = a(x) +
∞∑
k=1

√
λkψk(x)ξk(ω).

Remarks:

The KL expansion minimizes the mean square truncation error:∥∥∥∥a(x , ω)− a(x)−
N∑

k=1

√
λkψk(x)ξk(ω)

∥∥∥∥
L2(Ω;L2(D))

=

( ∞∑
k=N+1

λk

)1/2

.

The random variables ξk are centered and uncorrelated, but not
necessarily independent (in non-Gaussian setting). The remarks made
on pg. 6 apply here as well.

The KL expansion is a special case of gPC expansion, where the
polynomial order has been truncated to be at most 1.
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Stochastic Galerkin method
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Let D ⊂ Rd , d ∈ {1, 2, 3}, be a bounded domain with Lipschitz boundary.
We call x ∈ D the spatial variable.

For the remainder of the slides I will restrict the analysis to the “uniform
setting”, i.e., the input random field a(x , y) ≡ a(x , y(ω)) is assumed to be
given as a KL expansion

a(x , y) = a(x) +
∑
j≥1

yjψj(x), x ∈ D,

where yj
i.i.d.∼ Unif (−1/2, 1/2). Furthermore, we assume that it satisfies

the summability conditions a ∈ L∞(D), ψj ∈ L∞(D) for j ≥ 1 with
(‖ψj‖L∞(D))j≥1 ∈ `p(N) for some 0 < p ≤ 1.

We may then proceed to analyze the following parametric PDE.
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Let U := [−1/2, 1/2]N and suppose that y := (y1, y2, . . .) ∈ U. Our model
problem is to find the function u : D × U → R satisfying{

−∇ · (a(x , y)∇u(x , y)) = f (x) for x ∈ D, y ∈ U,

u(x , y) = 0 for x ∈ ∂D, y ∈ U,

where we assume that a(x , y) is given by the KL expansion on the
previous page satisfying the summability condition and the following
ellipticity condition: there exist constants amin, amax > 0 such that

0 < amin ≤ a(x , y) ≤ amax <∞ for all x ∈ D, y ∈ U.

Let V := H1
0 (D) and V ′ := H−1(D). Let f ∈ L2(D). The variational

formulation of this parametric PDE is: find
u ∈ L2(U;V ) := {g : U → V ; ‖g‖2

L2(U,V ) :=
∫
U ‖g(·, y)‖2

V dy <∞} such
that∫

U

∫
D
a(x , y)∇u(x , y) · ∇v(x , y)dx dy =

∫
U

∫
D
f (x)v(x , y) dx dy

for all v ∈ L2(U;V ).
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Generally, we can let the physical domain D ⊂ Rd to be a bounded
domain with Lipschitz boundary. However, let us assume a bit more:

The physical domain D ⊂ Rd , d ∈ {1, 2, 3}, is a convex and bounded
polyhedron with plane faces.

This assumption ensures that we have a conforming FE space. To this
end, let Vh denote the FE subspace of V spanned by piecewise linear FE
basis functions (φj)

Mh
j=1. Here, h denotes the (uniform) mesh width and Mh

denotes the number of degrees of freedom.

Moreover, we let ‖u‖V := ‖∇u‖L2(D) for u ∈ H1
0 (D) (the Poincaré

inequality ensures that this is equivalent to the usual H1(D)-norm).
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Let us denote

B(u, v) :=

∫
U

∫
D
a(x , y)∇u(x , y) · ∇v(x , y) dx dy ,

F (v) :=

∫
U

∫
D
f (x)v(x , y)dx dy

so our weak formulation is: find u ∈ L2(U;V ) such that B(u, v) = F (v)
for all v ∈ L2(U;V ).

Lemma (Lax–Milgram)

Let H be a (real) Hilbert space. Let b : H×H → R be a bilinear form such that

there exists a constant C > 0 such that for all u, v ∈ H, |b(u, v)| ≤ C‖u‖‖v‖.
there exists a constant c > 0 such that for all v ∈ H, |b(v , v)| ≥ c‖v‖2.

Then for all F ∈ H′, there exists a unique u ∈ H such that for all v ∈ H,
b(u, v) = F (v). Furthermore, we have the a priori estimate ‖u‖ ≤ c−1‖F‖H′ .

The Lax–Milgram lemma implies that our weak formulation has a unique
solution u ∈ L2(U;V ).
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Recall that F := {ν ∈ N∞0 ; |supp(ν)| <∞} denotes the set of all finitely
supported multi-indices, with support supp(ν) := {i ∈ N; νi 6= 0}. Let
∅ 6= Λ ⊆ F be a collection of multi-indices.

[Cohen et al. (2010)] propose the following discretizations:

Stochastic discretization
Let XΛ := {vΛ(x , y) =

∑
ν∈Λ vν(x)L̂ν(y); vν ∈ V }, where {L̂ν}ν∈F is

the basis of tensorized (orthonormal) Legendre polynomials
L̂ν(y) =

∏
i∈supp(ν) L̂νi (yi ). The Galerkin approximation

uΛ =
∑

ν∈Λ uν L̂ν ∈ XΛ of u is the unique solution to the problem

B(uΛ, vΛ) = F (vΛ) for all vΛ ∈ XΛ.

Stochastic and spatial discretization
Let XΛ,h = {vΛ,h(x , y) =

∑
ν∈Λ vν(x)L̂ν(y); vν ∈ Vh}. The Galerkin

approximation uΛ,h =
∑

ν∈Λ uν,hL̂ν ∈ XΛ,h of u is the unique solution to

B(uΛ,h, vΛ,h) = F (vΛ,h) for all vΛ,h ∈ XΛ,h. (4)

LUT University Numerical methods for UQ Fall 2020 19 / 27



Since XΛ,h is a finite-dimensional space and L2(U;V ) ' L2(U)⊗ V , (4) is
equivalent to

B(uΛ,h, φi L̂ν) = F (φi L̂ν) for all i ∈ {1, . . . ,Mh}, ν ∈ Λ.

Meanwhile, the Galerkin approximation can be written as
uΛ,h =

∑
j ,η cj ,ηφj L̂η using undetermined coefficients (cj ,η)j ,η. Plugging

this into the above yields∑
j ,η

cj ,ηB(φj L̂η, φi L̂ν) = F (φi L̂ν).

We can recast this as a matrix equation

Ac = b,

where A = (B(φi L̂ν , φj L̂η))(i ,ν),(j ,η) is the (Mh|Λ|)× (Mh|Λ|) stiffness

matrix, c = (ci ,ν)(i ,ν), and b = (F (φi L̂ν))(i ,ν) is the load vector.

Here and in what follows, the indexing of matrix/vector elements has been done using

multi-indices, with (i ,ν) ∈ {1, . . . ,m} × Λ and (j ,η) ∈ {1, . . . ,m} × Λ. The ordering of

the multi-indices is assumed to be consistent with the matrix equation Ac = b (for

example, rows/columns are indexed in lexicographic ordering).
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If a(x , y) has a KL-like expansion

a(x , y) = a(x) +
∑
k≥1

ykψk(x), y = (y1, y2, . . .) ∈ U,

where a ∈ L∞(D) and (‖ψk‖L∞)k≥1 ∈ `p(N) for some 0 < p ≤ 1, then

B(φi L̂ν , φj L̂η) =

=‖L̂ν‖2δν,η=I︷ ︸︸ ︷∫
U
L̂ν L̂η dy

∫
D
a∇φi · ∇φj dx

+
∑
k≥1

∫
U
yk L̂ν L̂η dy

∫
D
ψk∇φi · ∇φj dx

The stochastic and deterministic parts are completely independent!

Note the similarity of the previous expression with the matrix Kronecker
product illustrated on the next slide!
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Let us enumerate the rows and columns of the nm×nm Kronecker product
E ⊗ F by the multi-indices i , j ∈ {1, . . . , n} × {1, . . . ,m} in lexicographic
order, see Table below for an illustration. Using this convention, the
elements of the Kronecker product can be expressed concisely as

(E ⊗ F )i ,j = Ei1,j1Fi2,j2 , i , j ∈ {1, . . . , n} × {1, . . . ,m},
where i = (i1, i2) and j = (j1, j2) are ordered pairs.
Table: Enumeration of the columns and rows of the Kronecker product E ⊗ F by the
multi-indices i , j ∈ {1, . . . , n} × {1, . . . ,m} in lexicographic order.

column/row
index

(1, 1) (1, 2) · · · (1,m) (2, 1) · · · (n,m)

(1, 1) E1,1F1,1 E1,1F1,2 · · · E1,1F1,n E1,2F1,1 · · · E1,nF1,m

(1, 2) E1,1F2,1 E1,1F2,2 · · · E1,1F2,n E1,2F2,1 · · · E1,nF2,m
...

...
...

. . .
...

...
. . .

...
(1,m) E1,1Fm,1 E1,1Fm,2 · · · E1,1Fm,m E1,2Fm,1 · · · E1,nFm,m
(2, 1) E2,1F1,1 E2,1F1,2 · · · E2,1F1,n E2,2F1,1 · · · E2,nF1,m

...
...

...
. . .

...
...

. . .
...

(n,m) En,1Fm,1 En,1Fm,2 · · · En,1Fm,m En,2Fm,1 · · · En,nFm,m
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This allows us to write the stiffness matrix as

A =
∑
k≥0

(Rk ⊗ Sk),

where we have the ordinary FE stiffness matrices

R0 =

(∫
D
a∇φi · ∇φj dx

)
i ,j

and Rk =

(∫
D
ψk∇φi · ∇φj dx

)
i ,j

and their “stochastic” counterparts

S0 = I and Sk =

(∫
U
yk L̂ν L̂η dy

)
ν,η

.

All of these matrices are sparse!

Remark. If the tensorized orthogonal polynomials {L̂ν}ν∈F are not
normalized, then the formulae for the matrices Sk , k ≥ 0, are slightly
different. Note also that if the orthogonal polynomial family is not chosen
according to the Askey scheme, then the matrices Sk are no longer sparse
in general.
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Evaluation of the triple product expectations

In order to construct the matrices

Sk =

(∫
U
yk L̂ν L̂η dy

)
ν,η

, (5)

one needs to be able to compute the associated integrals. Since these are
integrals of polynomials, a simple approach is to use Gaussian quadratures.

It is also possible to design recursive formulae for these quantities. To wit:∫ 1/2

−1/2
y r L̂p(y)L̂q(y)dy = 2−rc(r , |p − q|,max{p, q}),

where c(0, k , `) = δk,0 and
c(r , k , `) =

√
β`+1−kc(r − 1, k − 1, `) +

√
β`−kc(r − 1, k + 1, `), with

βk := k2/(4k2 − 1). These formulae can be obtained trivially by
integrating the three-term recurrence over the support; see, e.g., Appendix
in [Hakula et al. (2015)]. Since (5) is a product of univariate integrals
(Fubini), the recursion or Gaussian quadratures are simple to implement.
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Remark. We could also consider the case where the input random field
a(x , y) is given by a gPC expansion

a(x , y) =
∑
µ∈F

aµ(x)L̂µ(y), aµ(x) =

∫
U
a(x , y)L̂µ(y) dy .

Then one ends up with the decomposition

A =
∑
µ∈F

(R ′
µ ⊗ S ′

µ),

where

R ′
µ =

(∫
D
aµ∇φi · ∇φj dx

)
i ,j

and S ′
µ =

(∫
U
L̂ν L̂ηL̂µ dy

)
ν,η

.

Again, one can compute the elements of S ′
µ using either Gaussian

quadrature or recursively based on the three-term recurrence relation; cf.,
e.g., Appendix in [Hakula et al. (2015)].
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Note that the underlying idea behind the stochastic Galerkin method is the
following: the mapping y 7→ u(·, y) is smooth (in fact, it is analytic), so
using orthogonal polynomials as the basis functions will produce
higher-order convergence rates as we will later see.

So far, we have not addressed the issue of how to choose the index set Λ.

A simple approach would be to work with a dimensionally truncated
problem (i.e., y ∈ [− 1/2, 1/2]s and ∅ 6= Λ ⊆ Ns

0) and using, e.g., a total
degree index set Λ. Next lecture, we will discuss this topic as well as
convergence rates for the stochastic Galerkin method.
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