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Introduction: transformation to the unit cube

Consider the (univariate) integral∫ ∞

−∞
g(y)ϕ(y)dy ,

where ϕ : R → R≥0 is a univariate probability density function, i.e.,∫∞
−∞ ϕ(y)dy = 1. How do we transform the integral into [0, 1]?

Let Φ: R → [0, 1] denote the cumulative distribution function of ϕ, defined
by Φ(y) :=

∫ y
−∞ ϕ(t)dt and let Φ−1 : [0, 1] → R denote its inverse. Then

we use the change of variables

x = Φ(y) ⇔ y = Φ−1(x)

to obtain ∫ ∞

−∞
g(y)ϕ(y)dy =

∫ 1

0
g(Φ−1(x))dx =

∫ 1

0
f (x) dx ,

where f := g ◦ Φ−1 is the transformed integrand.



Actually, we can multiply and divide by any other probability density
function ϕ̃ and then map to [0, 1] using its inverse cumulative distribution
function Φ̃−1:∫ ∞

−∞
g(y)ϕ(y) dy =

∫ ∞

−∞

g(y)ϕ(y)

ϕ̃(y)
ϕ̃(y) dy

=

∫ ∞

−∞
g̃(y)ϕ̃(y)dy (g̃(y) := g(y)ϕ(y)

ϕ̃(y)
)

=

∫ 1

0
g̃(Φ̃−1(x))dx =

∫ 1

0
f̃ (x) dx . (f̃ := g̃ ◦ Φ̃−1)

Ideally we would like to use a density function which leads to an easy
integrand in the unit cube. (Compare this with importance sampling for
the Monte Carlo method.)



This transformation can be generalized to s dimensions in the following
way. If we have a product of univariate densities, then we can apply the
mapping Φ−1 componentwise

y = Φ−1(x) = [Φ−1(x1), . . . ,Φ
−1(xs)]

T

to obtain∫
Rs

g(y)
s∏

j=1

ϕ(yj)dy =

∫
(0,1)s

g(Φ−1(x))dx =

∫
(0,1)s

f (x)dx .

(Of course, dividing and multiplying by a product of arbitrary probability
density functions would work here as well!)



Lognormal model

Let D ⊂ Rd , d ∈ {2, 3}, be a bounded Lipschitz domain. In the
“lognormal” case, we assume that the parameter y is distributed in RN

according to the product Gaussian measure µG =
⊗∞

j=1N (0, 1). The
parametric coefficient a(x , y) now takes the form

a(x , y) := a0(x) exp
( ∞∑

j=1

yjψj(x)
)
, x ∈ D, y ∈ RN, (1)

where a0 ∈ L∞(D) with a0(x) > 0, x ∈ D.



A coefficient of the form (1) can arise from the Karhunen–Loève (KL)
expansion in the case where log(a) is a stationary Gaussian random field
with a specified mean and a covariance function.

Example

Consider a Gaussian random field with an isotropic Matérn covariance
Cov(x , x ′) := ρν(|x − x ′|), with

ρν(r) := σ2
21−ν

Γ(ν)

(
2
√
ν

r

λC

)ν

Kν

(
2
√
ν

r

λC

)
,

where Γ is the gamma function and Kν is the modified Bessel function of
the second kind. The parameter ν > 1/2 is a smoothness parameter, σ2 is
the variance, and λC is the correlation length scale.

If {(λj , ξj)}∞j=1 is the sequence of eigenvalues and eigenfunctions of the

covariance operator (Cf )(x) :=
∫
D ρν(|x − x ′|)f (x ′)dx ′, i.e., Cξj = λjξj ,

where we assume that λ1 ≥ λ2 ≥ · · · and the eigenfunctions are
normalized s.t. ∥ξj∥L2(D) = 1, then we can set ψj(x) :=

√
λjξj(x) in (1)

to obtain the KL expansion for this Gaussian random field.



Lognormal model: let D ⊂ Rd , d ∈ {2, 3}, be a bounded Lipschitz domain
and let f ∈ H−1(D). Let ψj ∈ L∞(D) and bj := ∥ψj∥L∞ for j ∈ N such
that

∑∞
j=1 bj <∞, and define the set of admissible parameters

Ub :=

{
y ∈ RN :

∞∑
j=1

bj |yj | <∞
}
.

Consider the problem of finding, for all y ∈ U, u(·, y) ∈ H1
0 (D) such that∫

D
a(x , y)∇u(x , y) · ∇v(x) dx = ⟨f , v⟩H−1(D),H1

0 (D) for all v ∈ H1
0 (D),

where the diffusion coefficient is assumed to have the parameterization

a(x , y) := a0(x) exp
( ∞∑

j=1

yjψj(x)
)
, x ∈ D, y ∈ Ub,

where a0 ∈ L∞(D) is such that a0(x) > 0, x ∈ D.



Standing assumptions for the lognormal model

We make the following assumptions about the lognormal model:

(B1) We have a0 ∈ L∞(D) and
∑∞

j=1 bj <∞.

(B2) For every y ∈ Ub, the expressions amax(y) := maxx∈D a(x , y) and
amin(y) := minx∈D a(x , y) are well-defined and satisfy
0 < amin(y) ≤ a(x , y) ≤ amax(y) <∞.

(B3)
∑∞

j=1 b
p
j <∞ for some p ∈ (0, 1).

Remark: Note that in the lognormal case, a(x , y) can take values which
are arbitrarily close to 0 or arbitrarily large. Thus, the best we can do is to
find y -dependent lower and upper bounds amin(y) and amax(y). This will
lead to a y -dependent a priori bound and, consequently, y -dependent
parametric regularity bounds. This will make the QMC analysis more
involved, leading one to consider “special” weighted, unanchored Sobolev
spaces.



Clearly, the diffusion coefficient a(x , y) blows up for certain values of
y ∈ RN (think of yj = b−1

j ), but the PDE problem is well-defined in the
parameter set Ub which turns out to be of full measure in
(RN,B(RN), µG ).

Lemma

There holds Ub ∈ B(RN), where B denotes the Borel σ-algebra and
µG (Ub) = 1.

Proof. See Lemma 2.28 in “Sparse tensor discretizations of
high-dimensional parametric and stochastic PDEs” by Ch. Schwab and
C. J. Gittelson (2011).



The previous lemma implies that

I (F ) :=

∫
RN

F (y)µG (dy) =
∫
Ub

F (y)µG (dy).

Thus, it is sufficient to restrict our parametric regularity analysis to
y ∈ Ub, for which a(x , y) (and hence u(x , y)) are well-defined.

Let G ∈ H−1(D), our (dimensionally-truncated) integral quantity of
interest can thus be written as

Is(G (us)) :=

∫
Rs

G (us(·, y))
s∏

j=1

ϕ(yj) dy =

∫
(0,1)s

G (us(·,Φ−1(w)))dw

≈ 1

n

n∑
i=1

G (us(·,Φ−1(t i )))

=: Qn,s(G (us)),

where Qn,s represents a QMC rule over an s-dimensional point set
{Φ−1(t i )}ni=1 ⊂ Rs , where {t i}ni=1 ⊂ (0, 1)s .



Akin to the uniform case, we have a total error decomposition of the form

|I (G (u))− Qn,s(G (us,h))| ≤ |I (G (u − uh))|
+ |I (G (uh)− G (us,h))|
+ |Is(G (us,h))− Qn,s(G (us,h))|.

We focus on the QMC error, but briefly mention the corresponding
dimension truncation and finite element error results below. For further
details, see Graham, Kuo, Nichols, Scheichl, Schwab, Sloan (2015).

If D ⊂ R2 is a bounded convex polyhedron, f ∈ L2(D), G ∈ L2(D)′,
and a(·, y) is Lipschitz for all y ∈ Ub, then the finite element error
satisfies E[G (u − uh)] = O(h2). (Similar result holds for D ⊂ R3.)

For the Matérn covariance with ν > d/2, there holds

|I (G (uh))− I (G (us,h))| = O(s−χ), 0 < χ < ν
d − 1

2 .

There has been some recent work on generalizing this result, cf., e.g.,
Guth and Kaarnioja (2022): https://arxiv.org/abs/2209.06176
(Reader beware: this is a preprint and, as of the time of this writing,
it has not been peer-reviewed yet!)

https://arxiv.org/abs/2209.06176


Let us focus on the QMC error∫
Rs

G (us,h(·, y))dy − 1

n

n∑
k=1

G (us,h(·,Φ−1(tk))).

In this setting, we have

Is(F ) :=

∫
Rs

F (y)
s∏

j=1

ϕ(yj)dy =

∫
(0,1)s

F (Φ−1(w))dw

and the randomly shifted QMC rules

Q
(r)
n,s (F ) =

1

n

n∑
k=1

F (Φ−1({tk +∆r})),

Qn,R(F ) :=
1

R

R∑
r=1

Q
(r)
n,s (F ),

where we have R independent random shifts ∆1, . . . ,∆R drawn from
U([0, 1]s), tk := {kz

n }, with generating vector z ∈ Ns .



Function space setting

Kuo, Sloan, Wasilkowski, Waterhouse (2010): It turns out that the
appropriate function space for unbounded integrands is a “special”
weighted, unanchored Sobolev space equipped with the norm

∥F∥s,γ =

[ ∑
u⊆{1:s}

1

γu

∫
R|u|

(∫
Rs−|u|

∂|u|

∂yu

F (y)
( ∏

j∈{1:s}\u

ϕ(yj)

)
dy−u

)2

×
(∏

j∈u
ϖ2

j (yj)

)
dyu

]1/2
,

where γ = (γu)u⊆{1:s} are positive numbers and we have the weights

ϖ2
j (y) := exp(−2αj |yj |), αj > 0.

Brief idea: We’re interested in functions of the form g(y) = f (Φ−1(y)), where f ∈ F .
Now there exists an isometric space G of functions s.t.

f ∈ F ⇔ g = f (Φ−1(·)) ∈ G and ∥f ∥F = ∥g∥G .
If F is a RKHS with kernel KF , then G is a RKHS with kernel
KG(x , y) = KF (Φ−1(x),Φ−1(y)). Thus the core idea is to investigate Sobolev spaces
over unbounded domains which can be mapped isomorphically onto weighted Sobolev
spaces over (0, 1)s .



Theorem (Graham, Kuo, Nichols, Scheichl, Schwab, Sloan (2015))

Let F belong to the special weighted space over Rs with weights γ, with ϕ
being the standard normal density, and the weight functions ϖj defined as
above. A randomly shifted lattice rule in s dimensions with n being a
prime power can be constructed by a CBC algorithm such that√

E∆|IsF − Q∆
n,sF |2 ≤

(
2

n

∑
∅̸=u⊆{1:s}

γλu
∏
j∈u

ϱj(λ)

)1/(2λ)

∥F∥s,γ ,

where λ ∈ (1/2, 1] and

ϱj(λ) = 2

( √
2π exp(α2

j /η∗)

π2−2η∗(1− η∗)η∗

)λ

ζ(λ+ 1
2) and η∗ =

2λ− 1

4λ
,

with ζ(x) :=
∑∞

k=1 k
−x denoting the Riemann zeta function for x > 1.

The steps for QMC analysis are the same as in the uniform case: (1)
estimate ∥ · ∥s,γ for a given integrand (2) find weights γ which minimize
the upper bound (3) plug the weights into the new error bound and
estimate the constant (which ideally can be bounded independently of s).



Applying the theory in practice

Let us consider the parametric regularity of∫
D
a(x , y)∇u(x , y) · ∇v(x) dx = ⟨f , v⟩H−1(D),H1

0 (D) for all v ∈ H1
0 (D),

where a(x , y) := a0(x) exp
(∑∞

j=1 yjψj(x)
)
and f ∈ H−1(D).

Our strategy will be to obtain a parametric regularity bound for

∥
√
a(·, y)∇∂νu(·, y)∥L2(D),

that is, we find a sharp estimate for ∂νu(·, y) in the energy norm, and
then use the coercivity of the problem to bound this from below by

∥
√
a(·, y)∇∂νu(·, y)∥L2(D) ≥

√
amin(y)∥∇∂νu(·, y)∥L2(D)

=
√

amin(y)∥∂νu(·, y)∥H1
0 (D).

(Compare with exercise 1 of week 5, where we used a similar technique to
obtain a better constant for Céa’s lemma!)



Lemma

For all y ∈ Ub and ν ∈ F , there holds

∥
√
a(·, y)∇∂νu(·, y)∥L2(D) ≤ Λ|ν|b

ν ∥f ∥H−1(D)√
amin(y)

,

where (Λk)
∞
k=0 are the ordered Bell numbers defined by the recursion

Λ0 := 1 and Λk :=
k∑

ℓ=1

(
k

ℓ

)
Λk−ℓ, k ≥ 1.

Proof. By induction with respect to the order of the multi-indices. The
case |ν| = 0 is resolved by observing that

∥
√
a(·, y)∇u(·, y)∥2L2(D) =

∫
D
a(x , y)|∇u(x , y)|2 dx

= ⟨f , u(·, y)⟩H−1(D),H1
0 (D) ≤ ∥f ∥H−1(D)∥u(·, y)∥H1

0 (D)

≤
∥f ∥H−1(D)√

amin(y)
∥
√

a(·, y)u(·, y)∥L2(D).



Next, let ν ∈ F \ {0} be such that the claim has been proved for all
multi-indices with order < |ν|. By exploiting the fact that∥∥∥∥∂ma(·, y)

a(·, y)

∥∥∥∥
L∞(D)

=

∥∥∥∥∏
j≥1

ψj(·)νj
∥∥∥∥
L∞(D)

≤ bν ,

we obtain (using the Leibniz product rule)∑
m≤ν

(
ν

m

)∫
D
∂ma(x , y)∇∂ν−mu(x , y) · ∇v(x)dx = 0

⇔
∫
D
a(x , y)∇∂νu(x , y) · ∇v(x) dx

= −
∑

0 ̸=m≤ν

(
ν

m

)∫
D

∂ma(x , y)︸ ︷︷ ︸
= ∂ma(x,y)

a(x,y) a(x ,y)

∇∂ν−mu(x , y) · ∇v(x) dx .

Testing against v = ∂νu yields...



∥
√
a(·, y)∇∂νu(·, y)∥2L2(D) =

∫
D
a(x , y)|∇∂νu(x , y)|2 dx

≤
∑

0 ̸=m≤ν

(
ν

m

)∫
D

∣∣∣∣∂ma(x , y)
a(x , y)

∣∣∣∣ a(x , y)|∇∂ν−mu(x , y) · ∇∂νu(x , y)|dx

≤
∑

0̸=m≤ν

(
ν

m

)
bm∥

√
a(·, y)∇∂ν−mu(·, y)∥L2(D)∥

√
a(·, y)∇∂νu(·, y)∥L2(D)

leading to the recurrence relation

∥
√
a(·, y)∇∂νu(·, y)∥L2(D) ≤

∑
0̸=m≤ν

(
ν

m

)
bm∥

√
a(·, y)∇∂ν−mu(·, y)∥L2(D).

By our induction hypothesis,

∥
√
a(·, y)∇∂ν−mu(·, y)∥L2(D) ≤ Λ|ν|−|m|b

ν−m ∥f ∥H−1(D)√
amin(y)

.

This results in...



∥
√
a(·, y)∇∂νu(·, y)∥L2(D) ≤

∑
0̸=m≤ν

(
ν

m

)
bm∥

√
a(·, y)∇∂ν−mu(·, y)∥L2(D)

≤ bν ∥f ∥H−1(D)√
amin(y)

∑
0̸=m≤ν

(
ν

m

)
Λ|ν|−|m|

= bν ∥f ∥H−1(D)√
amin(y)

|ν|∑
ℓ=1

Λ|ν|−ℓ

∑
|m|=ℓ
m≤ν

(
ν

m

)

= bν ∥f ∥H−1(D)√
amin(y)

|ν|∑
ℓ=1

Λ|ν|−ℓ

(
|ν|
ℓ

)
= bν ∥f ∥H−1(D)√

amin(y)
Λ|ν|,

where the last step follows from the recursive definition of the sequence
(Λk)k≥0.



A bound for Λk

The ordered Bell numbers have the following simple upper bound.

Lemma (Beck, Tempone, Nobile, Tamellini (2012))

Λk ≤ k!

(log 2)k
for all k ≥ 0.

Proof. By definition Λk =
∑k

ℓ=1

(k
ℓ

)
Λk−ℓ =

∑k
ℓ=1

k!
ℓ!

Λk−ℓ

(k−ℓ)! , Λ0 = 1. Define

fk := Λk
k! ; then clearly

fk =
k∑

ℓ=1

fk−ℓ

ℓ!
, f0 = f1 = 1.

We prove by induction that fk ≤ αk for some α ≥ 1. The base steps
k = 0, 1 hold for all α ≥ 1 due to f0 = f1 = 1. Thus we assume that the
claim holds for f0, . . . , fk−1.



fk =
k∑

ℓ=1

fk−ℓ

ℓ!
≤

k∑
ℓ=1

αk−ℓ

ℓ!
= αk

k∑
ℓ=1

α−ℓ

ℓ!
≤ αk(e

1
α − 1) ≤ αk ,

where the last step holds provided that

e
1
α − 1 ≤ 1 ⇔ e

1
α ≤ 2

⇔ 1

α
≤ log 2

⇔ α ≥ 1

log 2
.

Thus fk ≤ αk for all α ≥ 1
log 2(> 1). We get the sharpest bound by taking

α = 1
log 2 , which yields

Λk = k!fk ≤ k!

(log 2)k

as desired.



Proposition

For all y ∈ Ub and ν ∈ F , there holds

∥∂νu(·, y)∥H1
0 (D) ≤

∥f ∥H−1(D)

minx∈D a0(x)
|ν|!

(log 2)|ν|
bν

∏
j≥1

exp(bj |yj |).

Proof. From the previous discussion, we have that√
amin(y)∥∇∂νu(·, y)∥L2(D) ≤ ∥

√
a(·, y)∇∂νu(·, y)∥L2(D)

≤ Λ|ν|b
ν ∥f ∥H−1(D)√

amin(y)

≤ |ν|!
(log 2)|ν|

bν ∥f ∥H−1(D)√
amin(y)

⇒ ∥∂νu(·, y)∥H1
0 (D) ≤

∥f ∥H−1(D)

amin(y)
|ν|!

(log 2)|ν|
bν .

The claim follows by observing that

1

amin(y)
=

1

minx∈D
(
a0(x) exp(

∑
j≥1 yjψj(x))

) ≤
exp(

∑
j≥1 |yj |∥ψj∥L∞(D))

minx∈D a0(x)
.



Estimating the special weighted Sobolev norm

Let G ∈ H−1(D). Then

∥G (us,h)∥2s,γ

=
∑

u⊆{1:s}

1

γu

∫
R|u|

(∫
Rs−|u|

∂|u|

∂yu

G (us,h(·, y))
∏
j ̸∈u

ϕ(yj) dy−u

)2∏
j∈u

ϖ2
j (yj) dyu

≲
∑

u⊆{1:s}

(|u|!)2

γu

(∏
j∈u

bj
log 2

)2 ∫
Rs

s∏
j=1

exp(2bj |yj |)
∏
j ̸∈u

ϕ(yj)
∏
j∈u

ϖ2
j (yj)dy

=
∑

u⊆{1:s}

(|u|!)2

γu

(∏
j∈u

bj
log 2

)2(∏
j ̸∈u

∫
R
exp(2bj |yj |)ϕ(yj)dyj︸ ︷︷ ︸
≤2 exp(2b2j )Φ(2bj )

)

×
(∏

j∈u

∫
R
exp(2bj |yj |)ϖ2

j (yj)dyj

)
.

Multiplying and dividing the summand by
∏

j∈u 2 exp(2b
2
j )Φ(2bj) yields...



∥G (us,h)∥2s,γ

≤
∑

u⊆{1:s}

(|u|!)2

γu

( s∏
j=1

2 exp(2b2j )Φ(2bj)

)

×
(∏

j∈u

b2j
2(log 2)2 exp(2b2j )Φ(2bj)

∫
R
exp(2bj |yj |)ϖ2

j (yj) dyj

)
.

Recall that ϖ2
j (yj) = exp(−2αj |yj |). If αj > bj , then∫

R exp(2bj |yj |)ϖ2
j (yj) dyj =

1
αj−bj

and we obtain

∥G (us,h)∥2s,γ

≤
∑

u⊆{1:s}

(|u|!)2

γu

( s∏
j=1

2 exp(2b2j )Φ(2bj)

)

×
(∏

j∈u

b2j
2(log 2)2 exp(2b2j )Φ(2bj)(αj − bj)

)
.



The remainder of the argument follows by similar reasoning as the uniform
setting: the error criterion is minimized by setting

αj =
1

2

(
bj +

√
b2j + 1− 1

2λ

)
and choosing the weights

γu =

(
|u|!

∏
j∈u

bj

2(log 2) exp(b2j /2)Φ(bj)
√
(αj − bj)ρj(λ)

)2/(1+λ)

(2)

for u ⊆ {1 : s}, with

λ =

{
1

2−2δ for arbitrary δ ∈ (0, 1/2) if p ∈ (0, 2/3],
p

2−p if p ∈ (2/3, 1),

yields the cubature error rate O(nmax{−1/p+1/2,−1+δ}) independently of
the dimension s. Thus using the weights (2) as inputs to the (fast) CBC
algorithm produces a QMC rule with a dimension independent convergence
rate in the lognormal setting!


