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Recap

We considered real Hilbert spaces, which are inner product spaces
(H,(-,-)) that are complete w.r.t. the induced norm || - || = \/(-,").

Proposition (Orthogonal decomposition)

If M is a closed subspace of a real Hilbert space H, then
H=Ma M*,
which means that every element y € H can be uniquely represented as

y=x+x", xeM, xte M.

This decompositions will be very useful for our purposes. For example, for
any closed subspace, we can introduce a mapping Py: H - M, y — x,
called an orthogonal projection.



Lemma

Let M C H be a closed subspace. The mapping Pyy: H— M, y — x, is
an orthogonal projection, i.e., Py = Py and Ran(Py) L Ran(/ — Py). It
satisfies the following properties:

o Py is linear;

o |[Pmll =1 if M# {0},

o I — Py =Py

o |ly — Puyll <lly — z|| for all z € M;
°oyeM = Pyy=y, (I-Pu)y=0

yeMt= Pyy=0, (I —Py)y=y;
o |lyll2 = l1Pmyll® + I(I = Pm)yl|? (Pythagoras).

Proof. Omitted; see for example [Rudin, Real and Complex Analysis, pp.
34-35]. O




Example

Let H; and H, be real Hilbert spaces and let A: H; — H, be a continuous
linear operator.

The kernel (or null space) of operator A is defined as
Ker(A) := {x € H; | Ax =0}.
The range (or image) of operator A is defined as
Ran(A) :={y € Hy | y = Ax, x € Hi}.

Then we have the following:
o Ker(A) is a closed subspace of Hi, and Ran(A) is a subspace of Hj.
o H; = Ker(A) @ (Ker(A))*.

e H, = Ran(A) @ (Ran(A))*.




We denote
L(X,Y):={A]| A: X — Y is bounded and linear}.

Proposition

IfY is complete, then L(X,Y') is complete w.r.t. operator norm (i.e., it is
a Banach space).

Proof. Let x € X and assume that Ay € L(X,Y), k € N, is a Cauchy
sequence. Then for all ¢ > 0, there exists N € N such that
€

Ix[1x

mn>N = ||An— A <
Especially,
|Amx — Anx|ly < ||Am — Anlll|x|lx <& when m,n> N,
so (Axx) is a Cauchy sequence in Y and therefore the limit
A(x) = kl|_)ngo Akx

exists.



It is easy to see that A(x) := limx_o0 Axx is linear. It is also bounded:
there exists N € N such that

mn>N = ||A,— A <1
Fix m > N. Then for all n > m,
[Anll <14 [|Am]|

and thus

[Anx|ly < (14 [|Am[)lIx]lx-
But ||Ax||y = limpseo |Anx|ly < (14 ||Aml])||x||x. Therefore A is
bounded.
Finally, we need to show that ||A, — A|| — 0 as n — co. Since we assumed
(Ak)72; to be Cauchy, let € > 0 be s.t. for m,n > N, there holds
|Am — An|| < e. Then

(A= A)x]ly = lim [Amx — Anx|ly <elx|x for all x € X
m—00

= |JJA-A<e.

O

Hence ||[A — Ap|| — 0 as n — oc.



If X = H; and Y = H, are Hilbert spaces, then L(H1, H») is a complete
normed space.

Definition

Let H be a Hilbert space. The space H' := L(H,R) is called the
topological dual space of H.

Corollary

If H is a Hilbert space, then H' is complete w.r.t. the operator norm.

Proof. This is an immediate consequence of the previous proposition since
R is a complete Hilbert space. O

Remark. In general, L(Hi, H») is not a Hilbert space even when both H;
and H, are. However, in the special case H' = L(H,R) it turns out that
indeed one can associate an inner product that induces the operator norm
| - || = meaning that H’ is a Hilbert space! This is made possible by the
Riesz representation theorem.



Existence results



Proposition (Riesz representation theorem)

Let H be a real Hilbert space. If A: H— R is a bounded linear functional,
i.e., A is linear and there exists C > 0 such that

|A(x)| < C||x|| for all x € H,
then there exists a unique y € H such that

A(x) = (x,y) forall x € H.

Proof. If A= 0, then y = 0 and this is unique. Suppose A # 0 and let
M :=Ker(A) = {x € H| A(x) = 0}.

Since A is continuous, M is a closed subspace of H. Furthermore, by the
orthogonal decomposition H = M @ M=, our assumption A # 0 implies
that M # H = M+ #£ {0}.



Let x € H and z € M+ with ||z|| = 1. Define
u = A(x)z — A(z)x.

Then
A(u) = A(x)A(z) — A(z)A(x) = 0.
meaning that v € M. In particular (u, z) = (A(x)z — A(z)x,z) = 0 and
Alx) = Alx) (z,2) = (A(X)z,2)

~——
=[lz|]?=1

= (A(2)x,z) = A(z)(x, z) = (x, ZA(2)).

.. The element y = zA(z) satisfies A(x) = (x, y).
To prove uniqueness, suppose that there exist y1, y» € H such that

A(x) = (x,y1) = (X, y2).
Then (x,y1 — y2) =0 for all x € H. Choose x = y; — y». Then

O=m—yo1i—y)=In-»l & n=yw



The Riesz operator

Let x € H and consider the linear mapping f: H = R, z +— (z,x)n. Note that £ € H'
since it follows from the Cauchy-Schwarz inequality that

15(2) = [{z, x)ul < l|zllullx[[ forall z € H. (1)

Now define the Riesz operator Ry: H — H' as x — f,.

Ry is linear: Ry(axi + bx2) = faxg1bx, = (, ax1 + bxo)y = a-, x1)w + b(-, x2)n =
af;q + bﬁQ = aRux1 + bRyx> for X1, X2 € H, a, b eR.

Ry is an isometry (||Rux||nr = ||x||#): it follows from (1) that

|Rux[r = ([l = supyy,,<1 {2, x)u| < [[x]|H. The other direction follows from
Ix[[F = (%) 0 = £(x) = (6] < Nl lxllo = I Rux]allx -

Ry is injective (one—to—one): let Rux = Rpy for some x,y € H. From linearity,
Ru(x—y)=0=f,=0= (x—y,z)y=0forallze H= x=y.

Ry is surjective (onto): by Riesz representation theorem, given A € H’, there
exists a unique x € H satisfying A(z) = (z,x)n = f(z) for all z € H. In other
words, A= (-, x)y = fx = Rux.

.. The Riesz operator Ry;: H — H’ is a bijective linear operator isometry.

Lemma
Let H be a Hilbert space. The dual space H' := L(H,R) is a Hilbert space induced by

Al = H s”up |AX| = /(A A, (A By = (Ry*A, Ry " B) .
x||p<1



Adjoint operator

Proposition
Let Hy and H, be real Hilbert spaces and suppose that A € L(H1, Hz). Then there exists

a unique bounded linear operator A*: H» — Hi, called the adjoint of A, satisfying
(Ax, y ), = (x, A"y) 1, . Moreover, ||Allmy—r, = | A ||H,— 1 -

Proof. Let y € H, and consider T,,: Hy — R, x — (Ax, y)n,. Clearly, T, is linear and
bounded so by the Riesz representation theorem there exists a unique z € H; s.t.
(Ax,yYu, = Ty(x) = (x,z)n, for all x € Hi.
Define A*y = z.
@ Let a,b € R and y1, y» € H>. Linearity follows from

(x,A"(ay1 + by2)) = (Ax, ay1 + by2) = a{Ax, y1) + b(Ax, y») =
a(x, A"y1) + b(x, A"y») = (x,aA%y1 + bA"y»). Since x € H; was arbitrary,
A*(ay1 + by2) = aA™y1 + bA y».

* * (%) *
O A"ty = SUP||yly, <1 A"y |lH = SUP| |yl 4, <1 SUP|Ix|1, <1 [(A"y, x)|

()
= SUP||y||, <1 SUP|1x||y, <1 [{y, Ax)| = SUP| x|, <1 |Axl, = |AllHy—H, < oo. O

(*)Let A € L(H, K), H, K Hilbert spaces. Cauchy—Schwarz sup|jy <1 [{AX Y k| < [|Ax]Ik.
Other direction: sup, |, <1 [{AX, y) k| > [(Ax, Ax) |k = |IN¥]| k-
“IAXII Kk = supyy i, <1 A%, y) k-

H/\XHK



Some properties of the adjoint operator

Proposition
Let H: and H» be real Hilbert spaces and suppose that A, B € L(H1, H>). Then
(i) [1A* Al -y = AN -y

(i) A™ = A, where A™ = (A")*;
(iii) (ClA + C2B)* = A" + B, Cc1,C € R.

Proof. (i) Let x € Hi, ||x||n, = 1. By the Cauchy—Schwarz inequality,
||AX||%I2 = <AX7AX>H2 = <X7 A*AX>H1 < HA*AX”"’l = HA||%'/1—>H2 < ||A*A||H1—>H1'

Other direction: ||A*A| < ||A*|| - |A]l = ||A||* (previous slide and exercise of week 1).
(ii) If x € Hy and y € H, then

<A**X7Y>H2 = <XaA*Y>H1 = <A*YaX>H1 =y, AX)H, = (AX, ¥)H,-

Hence (A**x — Ax,y)n, =0 forall y € H» = A™"x = Ax for all x € H = A™ = A.
(iii) Let x € Hy and y € Ha. Then

(caA+eB) y,x)m = (v, (A + @B)x)n, = cily, Ax)m, + 2y, BX)n,
=alA%y,x)m + (B 'y, x)n, = (A" + &B™)y, x)n.

Similarly to the previous part, we conclude that (1A + B)* = ciA* + e B™.



Self-adjoint operators

Definition
Let H be a Hilbert space. The operator A € L(H) := L(H, H) is called self-adjoint if
A*=A, ie,

(Ax,y) = (x,Ay) forall x,y € H.

Example

Let H be a Hilbert space and let A, B € L(H) be self-adjoint operators. Then
(i) A+ B is self-adjoint.

(ii) if ¢ € R, then cA is self-adjoint.

(i) if AB = BA, then AB is self-adjoint.

Parts (i) and (ii) follow immediately from part (iii) on the previous slide. If x,y € H,
then
(ABx, y) = (BAx,y) = (Ax,By) = (x, ABy) = (AB)" = AB.

Example

Let H be a Hilbert space and M C H a closed subspace. Then the orthogonal
projections Py: H — M and | — Py =: Py, : H — M~ are self-adjoint.




Lax—Milgram lemma

Proposition (Lax-Milgram lemma)

Let H be a real Hilbert space and let B: H x H — R be a bilinear
mapping! with C,c > 0 such that

|B(u,v)| < Cllu|| - |lv|| forall u,v € H, (boundedness)
B(u,u) > c|lu||® foralluc H. (coercivity)

Let F: H— R be a bounded linear mapping. Then there exists a unique
element u € H satisfying

B(u,v) = F(v) forallveH.

and 1
< Z||F|.
Jull < CH |

'B(u+ v,w) = B(u,w) + B(v,w), B(au,v) = aB(u, v),
B(u,v+ w) = B(u,v) + B(u,w), B(u,av) = aB(u, v)
for all u,v,w € H and a € R.




Proof. 1) Let v € H be fixed. Then the mapping
T:ww— B(v,w), H—R,

is bounded and linear. It follows from the Riesz representation theorem
that there exists a unique element a € H with

Tw = (a,w) forall we H.
Let us define the mapping A: H — H by setting
Av = a.

Then
B(v,w) = (Av,w) forall v,w € H.



2) We show that the mapping A: H — H is linear and bounded. Clearly,

<A(C1V1 + C2V2), W) = B(C1v1 + Gy, W)
= ClB(Vl, W) + CQB(VQ, W)
= <C1AV1 + 0 Avs, W>

for all w € H, so A(civi + cav2) = c1Avi + c2Ava. Moreover,

1AV|[* = (Av, Av)
= B(v,Av)
< ClvllAv]

which implies that
[Av] < Cllv]l.



3) We show that
A is one-to-one,
{Ran(A) = AH is closed in H.
We begin by noting that

cllvl]® < B(v,v) = (Av,v) < [|Av|[|lv]
and thus
|Av|| > c|lv|]| forall v € H. 2

Especially

Av=Aw = Alv—-w)=0=0=||A(v—w)|| >c|lv-w|]|>0=>v=w
so A is one-to-one.
To see that Ran(A) is closed, let y; = Ax; € Ran(A). The goal is to show that
y :=limj_ y; € Ran(A). We observe that

() 1
. o 2 im Ly — _
im g =l < fim =y =yl =0,
i.e., (x7)721 is Cauchy and x :=lim; o x; € H exists by completeness. Moreover,
lim [|Ax; — Ax|| < lim [|A[[[[x; — x|[ < C lim []x; — x|| =0
j—oo j—oo j—oo

and therefore
y = lim Ax; = Ax € Ran(A).
J—0o0



4) We show that Ran(A) = H. We prove this by contradiction: suppose
that Ran(A) = Ran(A) # H. Then there exists w € Ran(A)*, w # 0.1
This implies that

1 1

i.e., w = 0. This contradiction shows that Ran(A) = H. Therefore

A: H — H is a continuous bijection.

5) Existence of a solution. We use the Riesz representation theorem: since
F: H — R is linear and continuous, there exists b € H such that

F(v) = (b,v) forallveH.
Define u:= A~1b. Hence

Au=b <& (Au,v)=(b,v) forallveH
< B(u,v)=F(v) forallveH.

tSince (Ran(A)*)* = Ran(A) # H = (Ran(A))* # {0}.



6) Uniqueness. Suppose that
B(ui,w) = F(w) forall we H,
B(up,w) = F(w) for all w € H.
Let v := u; — up. By linearity,
B(u,w) =0 forall we H.

The coercivity of B implies that

—_

lull* < =B(u,u) =0

c
so that u =0, i.e.,, u1 = w.

7) A priori bound. If B(u,w) = F(w) for all w € H, then by setting
w = u we obtain

1 1 1
2<°B = ~F(u) < =|IF
lul® < —B(u, u) = —F(u) < —[|Fl}]u]

which immediately yields
1
< —||IF]|.
lull < —IIF]



Density argument

Lemma
Let X, Y be Banach spaces and let Z C X be a dense subspace. If
T:Z — Y is a linear mapping such that

ITxlly < Clixllx, xez, (3)
then there exists a unique extension T: X — Y with T|z = T and

ITx[ly < ClIxllx, x € X. (4)

Moreover, if (3) holds with equality, then so does (4).

Proof. Let x € X. Because Z C X is dense, there exists a sequence (zx)z2; C Z

k— o0

s.t. ||z« — x||lx —— 0. Let € > 0. Since (zx)z2; is a Cauchy sequence, there exists

N € N s.t.
£

mn>N = Hz,,,fz,,||x<c

Then there holds
| Tzm — Tzolly = (| T(2m — zn)|ly < Cllzm — za[[x <,

which means that (7Tz)72; is a Cauchy sequence in Y. Since Y is complete, there
exists y := limx_,00 Tzx. Hence we may define T: X — Y by setting T(x) = y.



We begin by showing that T is well-defined. Let (zK)21, (Zk)721 be two sequences in Z
s.t. zk, Zk H—°°> x in X. Then

1 T2 = T2lly = I Tz — Zlly < Cllze — Zll < Cllze — x| + ClIZ — x| *25°
Recalling that 7~'(x) = limx_ 00 T2k, we obtain
T2 — TN < T2 = Tzl + || Tz — T(x)]| =0,

showing that T is well-defined.
Next we show that T is linear. Let x,Xx € X and a,b € R. Let Z > z £220, x and
7357 “2= % Now ax + bx € X and Z 3 az + bZ — ax + bx. Thus

T(ax+ bX) = lim T(azx + bz) = a lim Tzx+b lim Tz =aTx+ bTx,
k— o0 k— o0 k— o0
since the limit is linear.

Since the norm is continuous,

||TXH = I|m Txk|| = I|m | Tx|| < C I|m x| = C|Ix]|-

Finally, T|z = T holds by cgonstructlon and the unlqueness of the limit Tzx — y ensures
that there cannot exist another mapping L: X — Y s.t. L|z = T and || Lx|| < C||x|. O

tLet y i=limg oo Tzx and y 1= limy00 T 2.
Then || T(azk + bz) — ay — by|| < a|| Tz« — y|| + b|| T2 — y|| — 0.
Hence limx— oo T(azk + bzi) = alimioo T2k + blimioo TZk.



