
Uncertainty Quantification and Quasi-Monte Carlo
Sommersemester 2025

Vesa Kaarnioja
vesa.kaarnioja@fu-berlin.de

FU Berlin, FB Mathematik und Informatik

Third lecture, April 28, 2025

Recap: Weak formulation

Let D ⊂ Rd be an open and bounded Lipschitz domain. We consider the problem{
−∇ · (a(x)∇u(x)) = f (x), x ∈ D,

u|∂D = 0,
(1)

where f : D → R is the source and a : D → R is the diffusion coefficient.

Uniform ellipticity assumption: There exist constants amax, amin > 0 such that

0 < amin ≤ a(x) ≤ amax < ∞ for all x ∈ D.

Definition

Let a ∈ L∞(D) and f ∈ L2(D). Then u ∈ H1
0 (D) is called a weak solution to (1) if

B(u, v) = F (v) for all v ∈ H1
0 (D), (2)

where

B(u, v) =

∫
D

a(x)∇u(x) · ∇v(x) dx

and

F (v) =

∫
D

f (x)v(x) dx .

73

Galerkin method

1. Let Vm = span{ϕi}mi=1 ⊂ H1
0 (D) be a finite-dimensional subspace.

2. Find um ∈ Vm s.t.

B(um, ϕ) = F (ϕ) for all ϕ ∈ Vm. (3)

Lemma

The problem (3) has a unique solution which also satisfies the so-called
Galerkin orthogonality

B(u − um, ϕ) = 0 for all ϕ ∈ Vm,

where u is the solution to (2).

Proof. The existence of a unique solution is an immediate consequence of
the Lax–Milgram lemma applied to (3) in a subspace Vm ⊂ H1

0 (D). The
orthogonality follows from

B(u−um, ϕ) = B(u, ϕ)−B(um, ϕ) = F (ϕ)−F (ϕ) = 0 for all ϕ ∈ Vm.

74

Let Vm := span{ϕi}mi=1 ⊂ H1
0 (D). Note that the problem of finding

um ∈ Vm such that

B(um, ϕ) = F (ϕ) for all ϕ ∈ Vm

is equivalent to

B(um, ϕj) = F (ϕj) for all j ∈ {1, . . . ,m}.

Since um ∈ Vm, we can write it as um(x) =
∑m

i=1 ciϕi (x) using
undetermined coefficients c = (ci)

m
i=1 ⊂ R. Thus the problem of finding

um ∈ Vm is equivalent to solving the coefficients c satisfying
m∑
i=1

ciB(ϕi , ϕj) = F (ϕj) for all j ∈ {1, . . . ,m},

which can be expressed as a linear system

Ac = F ,

where A = (Ai ,j)
m
i ,j=1 and F = (Fi)

m
i=1 are such that

Ai ,j = B(ϕi , ϕj) =

∫
D
a(x)∇ϕi (x) · ∇ϕj(x)dx , Fi =

∫
D
f (x)ϕi (x) dx .

75

The Galerkin solution is a “quasi-optimal” approximation of the weak
solution of the PDE in Vm.

Lemma (Céa’s lemma)

Let u ∈ H1
0 (D) be the solution to B(u, ϕ) = F (ϕ) for all ϕ ∈ H1

0 (D) and
let um ∈ Vm be the solution to B(um, ϕ) = F (ϕ) for all ϕ ∈ Vm. Then

∥u − um∥H1
0 (D) ≤

amax

amin
inf

v∈Vm

∥u − v∥H1
0 (D).

Proof. Let v ∈ Vm. Then by the coercivity and continuity of B, there
holds

amin∥u − um∥2H1
0 (D) ≤ B(u − um, u − um)

= B(u − um, u − v) + B(u − um, v − um︸ ︷︷ ︸
∈Vm

)

︸ ︷︷ ︸
=0

≤ amax∥u − um∥H1
0 (D)∥u − v∥H1

0 (D).

Hence amin∥u − um∥H1
0 (D) ≤ amax∥u − v∥H1

0 (D).

76

Finite element method

One could choose the space Vm ⊂ H1
0 (D) to be virtually anything. The

finite element method is a particular way of constructing this finite
dimensional space.

In 2D, we approximate the geometry D by constructing a triangulation.

That is, the computational domain D is represented as the union of
non-overlapping triangles called elements. The elements are assumed to
cover the whole D (and only D). In 2D the elements are typically triangles
or quadrilaterals, but they could be practically of any shape. In 3D the
elements are typically tetrahedra or hexahedra. Prisms and pyramids are
also widely used.

If the domain D is a polyhedron, then the division to elements is accurate.
If the domain has, e.g., curved edges, then it cannot be approximated
accurately with linear elements. This introduces additional error to the
numerical approximation.

77

A single element is denoted by K . The collection of elements is called a
mesh and denoted with Th, indexed by the diameter of the maximum
element in the mesh. The size of the elements plays a key role in the
convergence analysis of the method. For a well-defined method, reducing
the size of the elements, i.e., refining the mesh, improves the solution (or
at least does not make it worse).

The mesh is a discretization of the domain. It does not define a function
space. To define the global space, we define the local space in each of the
elements. The global space is a piecewise combination of the local,
elementwise spaces.

Assume that the domain D is a 2D polyhedral domain, e.g., unit square,
and that it has been divided into triangles. The simplest possible subspace
to H1

0 (D) is a piecewise linear, continuous space

Vh := {v ∈ H1
0 (D) | v ∈ P1(K) ∀K ∈ Th}.

The continuity is enforced by our requirement that the functions belong to
H1(D).

78

Let Th be a triangulation of the domain D with FE nodes (ni)
N
i=1, where

m < N nodes are in the interior of the domain and N −m nodes are on
the boundary ∂D. For later convenience, let us denote
interior := {i ∈ {1, . . . ,N} | ni ̸∈ ∂D}.

We can choose piecewise linear basis functions ϕi = ϕni such that

ϕni (nj) = δi ,j ,

that is, ϕni (ni) = 1 and ϕni (nj) = 0 whenever i ̸= j over the FE nodes
(ni)

N
i=1.

Since Vh is finite-dimensional, it is spanned by a set of global basis
functions

Vh = span{ϕni}i∈interior.

79

Figure: Left: An illustration of global, piecewise linear FE basis functions
spanning Vh over a regular, uniform triangulation of (0, 1)2. Right: Bird’s-eye
view of the same global FE basis functions.

80

The goal is to find the FE solution uh ∈ Vh such that∫
D
a(x)∇uh(x) · ∇ϕ(x) dx =

∫
D
f (x)ϕ(x) dx for all ϕ ∈ Vh.

For simplicity, suppose that f (x) :=
∑N

i=1 fiϕni (x) for some known

coefficients f := (fi)
N
i=1 ⊂ R.† We can write uh =

∑N
i=1 ciϕni ∈ Vh and

enforce the zero Dirichlet boundary condition by setting ci = 0 for any
ni ∈ ∂D. Testing the variational formulation against the FE basis
functions ϕ = ϕj for all j ∈ interior:∑

i∈interior
ci

∫
D
a(x)∇ϕni (x) · ∇ϕnj (x)dx︸ ︷︷ ︸

=:Ai,j

=
N∑
i=1

fi

∫
D
ϕni (x)ϕnj (x) dx︸ ︷︷ ︸

=:Mi,j

.

Thus the problem is to solve the FE expansion coefficients
c = (ci)i∈interior from the equation

Ainterior,interiorc = Minterior,:f ,
where the matrix A = (Ai ,j)

N
i ,j=1 is called the stiffness matrix and

M = (Mi ,j)
N
i ,j=1 is called the mass matrix.

†Note that here we do not require f = 0 on ∂D! For general f ∈ L2(D), instead of
the mass matrix, one would use (Gaussian) quadratures to form the right-hand side.

81

Our goals in finite element programming:

Construct a data structure to represent the topology of the finite
element mesh.

If the FE nodes are given as rows of an array “nodes”, then the
elements are triangles with vertices nodes[i, :], nodes[j, :], nodes[k, :]
for certain indices i,j,k.
We can represent the elements as an array “element”, where each row
contains the indices corresponding to the nodes which form a triangle
in our mesh.
Since we focus on homogeneous zero Dirichlet boundary conditions, we
can enforce the boundary condition by setting the FE expansion
coefficients of the FE solution to be zero at the boundary nodes. This
is equivalent to choosing a subspace Vh consisting only of those FE
basis functions ϕni corresponding to FE nodes in the interior of the
mesh, i.e., ni ̸∈ ∂D. Thus it is helpful to store the indices of the nodes
lying in the interior of the domain into a vector called “interior”.

Assembly of finite element matrices (stiffness and mass matrix).
All triangles in our FE mesh can be mapped affinely onto a reference
triangle of our choosing (say,
{(x , y) ∈ Rd | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x}) which we can exploit in the
construction of the FE matrices.

82

Finite element programming (in Python)

83

Triangulation of D = (0, 1)2

import numpy as np

def generateFEmesh(level):

Create a regular uniform triangulation

of the unit square (0,1)**2

n1 = 2**level+1 # number of nodes in 1D

Topology: FE nodes, mesh elements, interior, centers

X,Y = np.meshgrid(np.arange(0,n1)/(n1-1),

np.arange(0,n1)/(n1-1))

nodes = np.array([X.flatten(),Y.flatten()]).T

element = []; interior = []

for i in range(0,n1-1):

for j in range(0,n1-1):

element.append([j*n1+i,(j+1)*n1+i,j*n1+i+1])

element.append([(j+1)*n1+i,(j+1)*n1+i+1,j*n1+i+1])

if i < n1-2 and j < n1-2:

interior.append((j+1)*n1+i+1)

centers = np.mean(nodes[element[:]],axis=1)

return nodes,element,interior,centers

84

Mass matrix

Let (Kℓ)
nelem
ℓ=1 be non-overlapping mesh elements s.t. D =

⋃nelem
ℓ=1 Kℓ. Let

us first consider constructing the global mass matrix:

Mi ,j =

∫
D
ϕni (x)ϕnj (x)dx =

nelem∑
ℓ=1

∫
Kℓ

ϕni (x)ϕnj (x) dx .

We can think of the elements of the global mass matrix as a sum of locally
defined mass matrices in each “active” element. Recall that we already
gave a labeling to the FE nodes earlier, and each row of matrix element

contains the indices of FE nodes which form an element in our FE mesh.

initialize Mi,j = 0, i, j ∈ {0, . . . , ncoord− 1}
for k ∈ {0, . . . , nelem− 1}, do
1. set ind = element[k]
2. let K be the element with vertices nodes[ind]
3. compute local mass matrix L ∈ R3×3, where

Li,j =
∫
K
ϕni (x)ϕnj (x)dx , i , j ∈ {0, 1, 2}

4. set Mind,ind = Mind,ind + L

end for

Let us concentrate on step 3. 85

Local mass matrix

Let K ⊂ R2 be an arbitrary triangle with vertices n1, n2, n3, and
K̂ = {(x1, x2) | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1− x1} the reference triangle.

Let ϕ̂1(x) = 1− x1 − x2, ϕ̂2(x) = x1, ϕ̂3(x) = x2 be the local basis.

The affine mapping FK : K̂ → K , FK (x) := Bx + n1,
B = [n2 − n1,n3 − n1], can be used to write the global basis
functions as ϕni (x) = ϕ̂i (F

−1
K (x)). Change of variables:∫

K
ϕni (x)ϕnj (x)dx = | detB|

∫
K̂
ϕ̂i (x)ϕ̂j(x) dx =

{
| detB|

12 if i = j ,
| detB|

24 if i ̸= j

that is (∫
K
ϕni (x)ϕnj (x) dx

)3

i ,j=1

= | detB|

 1
12

1
24

1
24

1
24

1
12

1
24

1
24

1
24

1
12

 .

86

Stiffness matrix

We also need to construct the global stiffness matrix

Ai ,j =

∫
D
a(x)∇ϕni (x) · ∇ϕnj (x)dx .

To simplify the analysis, let us suppose that the diffusion coefficient a(x)
has been discretized as a piecewise constant function over the mesh
elements, i.e.,

a(x) =
nelem∑
ℓ=1

aℓχKℓ
(x), χKℓ

(x) :=

{
1 if x ∈ Kℓ,

0 otherwise.

Here, we can take aℓ to be the value of a evaluated at the center point of
element Kℓ. Then

Ai ,j =
nelem∑
ℓ=1

aℓ

∫
Kℓ

∇ϕni (x) · ∇ϕnj (x) dx .

Idea: Precompute the stiffness tensor Si ,j ,ℓ :=
∫
Kℓ

∇ϕni (x) · ∇ϕnj (x) dx .
Given a, the stiffness matrix is a tensor-vector contraction A = S ×3 a,
where a is a vector containing values of a at element center points. 87

The idealized construction of the stiffness tensor is as follows:

initialize Si,j,k = 0, i, j ∈ {0, . . . , ncoord− 1}, k ∈ {0, . . . , nelem− 1}
for k ∈ {0, . . . , nelem− 1}, do
1. set ind = element[k]
2. let K be the element with vertices nodes[ind]
3. compute local stiffness matrix L ∈ R3×3, where

Li,j =
∫
K
∇ϕni (x) · ∇ϕnj (x)dx , i, j ∈ {0, 1, 2}

4. set Sind,ind,k = L

end for

Problem: Scipy does not support sparse tensors! :(
Workaround: reshape the n × n ×m tensor into an n2 ×m matrix!

initialize gradi,j,k = 0 for i, j ∈ {0, . . . , ncoord ∗ ncoord− 1},
k ∈ {0, . . . , nelem− 1}
for k ∈ {0, . . . , nelem− 1}, do
1. set ind = element[k]

2. let K be the element with the vertices nodes[ind]
3. compute local stiffness matrix L ∈ R3×3, where

Li,j =
∫
K
∇ϕni (x) · ∇ϕnj (x)dx , i , j ∈ {0, 1, 2}

4. initialize dummy = Oncoord,ncoord; set dummyind,ind = L

5. set grad[:, k] = dummy.flatten()
end for

88

Local stiffness matrix

Let K ⊂ R2 be an arbitrary triangle with vertices n1, n2, n3, and
K̂ = {(x1, x2) | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1− x1} the reference triangle.
Let ϕ̂1(x) = 1− x1 − x2, ϕ̂2(x) = x1, ϕ̂3(x) = x2 be the local basis.
The affine mapping FK : K̂ → K , FK (x) := Bx + n1,
B = [n2 − n1,n3 − n1], can be used to write the global basis
functions as ϕni (x) = ϕ̂i (F

−1
K (x)). Note that there holds

∇ϕni (x) = B−T(∇ϕ̂i)(F
−1
K (x)). Change of variables:∫

K
∇ϕni (x) · ∇ϕnj (x) dx = | detB|

∫
K̂
B−T∇ϕ̂i (x) · B−T∇ϕ̂j(x)dx .

Define GT := (∇ϕ̂1,∇ϕ̂2,∇ϕ̂3) =

(
−1 1 0
−1 0 1

)
. Then(∫

K
∇ϕni (x) · ∇ϕnj (x) dx

)3

i ,j=1

=
| detB|

2
GB−1B−TGT. (4)

Remark. With a bit of linear algebra, one can check that (4) is equal to
DTD

4area(K) , D := [n3 − n2,n1 − n3,n2 − n1].
89

The shoelace formula

def shoelace(g):

Compute the area of a triangle with

vertices g[0], g[1], and g[2]

return abs(np.linalg.det([g[0],g[1]])

+ np.linalg.det([g[1],g[2]])

+ np.linalg.det([g[2],g[0]]))/2

90

Assembly of the finite element matrices

from scipy import sparse

def generateFEmatrices(nodes,element):

ncoord = len(nodes); nelem = len(element)

mass_data = []; mass_rows = []; mass_cols = []

grad_data = []; grad_rows = []; grad_cols = []

localmass = np.array([[1/12,1/24,1/24],[1/24,1/12,1/24],[1/24,1/24,1/12]])

for k in range(nelem):

ind = element[k]; g = nodes[ind]

detB = abs(np.linalg.det([g[1]-g[0],g[2]-g[0]]))

Dt = np.array([g[2]-g[1],g[0]-g[2],g[1]-g[0]])

triarea = shoelace(g)

localgrad = Dt@Dt.T/4/triarea

for i in range(3):

for j in range(3):

mass_rows.append(ind[i]); mass_cols.append(ind[j]);

mass_data.append(detB*localmass[i,j])

grad_rows.append(ind[i]*ncoord+ind[j]); grad_cols.append(k)

grad_data.append(localgrad[i,j])

mass = sparse.csr_matrix((mass_data,(mass_rows,mass_cols)),

shape=(ncoord,ncoord))

grad = sparse.csr_matrix((grad_data,(grad_rows,grad_cols)),

shape=(ncoord*ncoord,nelem))

return grad,mass
91

FEM programs in Python

level = 5 # discretization level

Generate FE mesh

nodes,element,interior,centers = generateFEmesh(level)

ncoord = len(nodes) # number of coordinates

Generate FE matrices

grad,mass = generateFEmatrices(nodes,element)

To obtain the stiffness matrix for a piecewise constant diffusion coefficient,
we can use the following simple routine.

def UpdateStiffness(grad,a):

Given vector a containing the values of the diffusion

coefficient at the element center points, return the

corresponding stiffness matrix

n = np.sqrt(grad.shape[0]).astype(int)

vec = grad @ sparse.csr_matrix(a.reshape((a.size,1)))

return sparse.csr_matrix.reshape(vec,(n,n)).tocsr()

92

Finite element method in 2D – summary

1 Form a triangulation Th of the domain D. Let (nj)
N
j=1 be the finite

element nodes. Form the list interior containing the indices of
interior nodes and the element connectivity matrix element. Denote
by m = |interior| the number of degrees of freedom.

2 Form the stiffness matrix A ∈ Rm×m and mass matrix M ∈ RN×N .
3 Form the loading vector b ≈ Minterior,:f , where

f = [f (n1), . . . , f (nN)]
T.

4 Solve c = (cj)
m
j=1 ∈ Rm from Ac = b.

5 The finite element solution is given by

uh(x) =
m∑
j=1

cjϕj(x), where ϕj = ϕnj .

Remark: The global basis functions ϕj are typically never constructed in
practice! Instead, note that uh(nj) = cj . Therefore, the nodal values of
the FE solution are precisely the FE expansion coefficients – if one needs
to evaluate the FE solution for x ∈ K , one can use linear interpolation
between the vertices of the triangle element K .

93

Computing norms of finite element solutions

Let Vh ⊂ H1
0 (D) be a finite element space spanned by piecewise linear,

continuous FE basis functions {ϕi}mi=1 in the interior of the domain. Let

uh(x) =
m∑
i=1

ciϕi (x) ∈ Vh.

If Mi ,j =
∫
D ϕi (x)ϕj(x) dx is the mass matrix and

Si ,j =
∫
D ∇ϕi (x) · ∇ϕj(x)dx is the stiffness matrix of the Dirichlet

Laplacian −∆ with homogeneous zero Dirichlet boundary conditions, then

∥uh∥L2(D) =
√

cTMc and ∥uh∥H1
0 (D) =

√
cTSc ,

where c = (ci)
m
i=1. These identities imply that M and S are positive

definite.

94

Numerical example

Consider the elliptic PDE problem{
−∇ · ((1 + x2 + y 2)∇u(x , y)) = x + y , (x , y) ∈ (0, 1)2,

u|∂D = 0.

We can solve this problem using the code developed above as follows.

level = 5 # discretization level

nodes,element,interior,centers = generateFEmesh(level) # generate FE mesh

ncoord = len(nodes) # number of coordinates

grad,mass = generateFEmatrices(nodes,element) # generate FE matrices

a = lambda x: 1+np.sum(x**2,axis=1) # diffusion coefficient

f = lambda x: np.sum(x,axis=1) # source term

rhs = mass[interior,:]@f(nodes) # precompute the loading vector

aval = a(centers) # evaluate diffusion coefficient at element centers

stiffness = UpdateStiffness(grad,aval) # assemble stiffness matrix

sol = np.zeros(ncoord) # initialize solution vector

Solve the PDE

sol[interior] = sparse.linalg.spsolve(stiffness[np.ix_(interior,interior)],rhs)

Visualize the solution

import matplotlib.pyplot as plt

fig = plt.figure(figsize=plt.figaspect(1.0))

ax = fig.add_subplot(1,1,1,projection=’3d’)

ax.plot_trisurf(nodes[:,0],nodes[:,1],sol,triangles=element,cmap=plt.cm.rainbow)

plt.show() 95

FE solution

96

This note illustrates possibly the simplest (nontrivial) implementation of conforming h-FEM.
“Conforming” means that the FE space Vh is a proper subspace of the solution space H1

0 (D).
With this method, the only way to increase the approximation accuracy is by mesh refinement.
One could generalize the method in a various number of ways:

Using higher-order piecewise polynomial basis functions leads to p- and hp-FEM. The idea
is to use higher-order polynomials and larger elements in regions of the computational
domain where the PDE solution is smooth; conversely, one would use lower order
polynomial basis functions and smaller elements near singularities (caused by obtuse
angles in the geometry, etc.). A proper refinement strategy with hp-FEM can lead to
exponentially convergent implementations.
One can even use discontinuous basis functions, but the method becomes
non-conforming. This has the benefit of improved parallelization and easy adaptation, but
the implementation details are significantly more involved.
Instead of discretizing the diffusion coefficient as a piecewise constant function over the
elements, a better approach would be to compute the local stiffness matrices∫
K a(x)∇ϕni (x) · ∇ϕnj (x) dx using Gaussian quadratures for triangles. Similarly, the

loading term
∫
K f (x)ϕni (x) dx could also be computed using a Gaussian quadrature. For

simplicity of presentation, the details are omitted.
One could easily extend the method for more nontrivial boundary conditions:
non-homogeneous Dirichlet, Neumann, Robin, mixed boundary conditions, etc. This
results in additional “book-keeping” and the details are omitted.
Many practitioners rely on automated mesh generation using software such as Netgen, etc.
When the domain has curved boundaries, one usually either ignores the geometry modeling
error (if there is reason to believe it is negligible) or uses, e.g., curved finite elements.
Instead of using a direct solver like scipy.sparse.linalg.spsolve to solve the FE
system, algebraic multigrid methods (and/or iterative solvers) can be used to improve the
computational complexity. Nonlinear PDEs lead to nonlinear discretized FE systems.

97

