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Practical matters

Lectures on Mondays at 10:15-11:45 in A6/032 by Vesa Kaarnioja.

Exercises on Tuesdays at 10:15-11:45 in A6/032 by Vesa Kaarnioja.

There will be no lectures on April 14, April 21, and June 9.

The first and second lecture will be held April 15 and April 22 in
room A3/120 in place of the exercise session.

Exercise sheets will be published regularly on the course Whiteboard
page. Please submit your solutions to the exercises before the
deadlines specified on each exercise sheet.

The conditions for completing this course are
(1) successfully earning a cumulative 60% of points from the exercises
(active participation + regular attendance), and
(2) successfully passing the course exam.

The course evaluation is based on the oral exam at the end of the
course.
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Exercise guidelines

Solutions to exercises can be submitted either via email or by handing in your
solutions at the exercise session by the specified deadline. Late submissions will
not be considered.

Please present your calculations clearly and neatly, providing explanation for all
steps.

Ensure that your arguments are coherent and presented in an orderly fashion.
Organize your solutions logically, starting from the problem statement and
proceeding step-by-step to the solution.

Typeset or write your solutions in clear handwriting for easy readability.

Avoid ambiguity in your solutions: consider the perspective or the reader and
ensure that your solutions are understandable from their point of view (i.e., the
reader should not have to guess what you have written).

Use appropriate mathematical notation and terminology.

Double-check your solutions for errors and correctness before submission. Aim for
precision and accuracy in your mathematical expressions and calculations.

In programming tasks, ensure that your program executes successfully. Include the
source code as well as the output of the program as part of your submission.
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Uncertainty in groundwater flow

Risk analysis of radwaste disposal or CO2 sequestration.

Darcy’s law q(x) + a(x)∇p(x) = f (x)
mass conservation law ∇ · q(x) = 0

in D ⊂ Rd , d ∈ {1, 2, 3}
together with boundary conditions

Uncertainty in a(x ,ω) leads to uncertainty in q(x ,ω) and p(x ,ω)
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Criticality problem for nuclear reactors

−∇ · ( a(x)︸︷︷︸
diffusion

∇u(x)) + b(x)︸︷︷︸
absorption

u(x) = λc(x)︸︷︷︸
fission

u(x)

The smallest eigenvalue λ1 ∈ R measures criticality of a reactor.
Eigenfunction u1(x) is the neutron flux at the point x .

Source: Argonne National
Laboratory on Flickr

λ1 ≈ 1 ⇒ operating efficiently

λ1 > 1 ⇒ not self-sustaining

λ1 < 1 ⇒ supercritical
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Optimization under uncertainty

Find minz∈L2(D) J(u, z),

J(u, z) :=
1

2

∫
Ω

∫
D
(u(x , ω)− g(x))2 dx dP(ω) +

α

2

∫
D
z(x)2 dx ,

subject to
−∇ · (a(x , ω)∇u(x , ω)) = z(x), x ∈ D, a.e. ω ∈ Ω

u(x , ω) = 0, x ∈ ∂D, a.e. ω ∈ Ω,

zmin(x) ≤ z(x) ≤ zmax(x), a.e. x ∈ D.
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Domain uncertainty quantification

Three realizations of a random spatial domain
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Electrical impedance tomography

Use measurements of current and voltage collected at electrodes covering
part of the boundary to infer the interior conductivity of an object/body.


∇ · (σ∇u) = 0 in D,

σ ∂u
∂n = 0 on ∂D \

⋃L
k=1 Ek ,

u + zkσ
∂u
∂n = Uk on Ek , k ∈ {1, . . . , L},∫

Ek
σ ∂u
∂n dS = Ik , k ∈ {1, . . . , L},
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Consider the elliptic PDE problem:{
−∇ ·

(
a(x)∇u(x)

)
= f (x) for x ∈ D,

+boundary conditions.

In practice, one or several of the material/system parameters may be
uncertain or incompletely known and modeled as random fields:

PDE coefficient a may be uncertain;

Source term f may be uncertain;

Boundary conditions may be uncertain;

The domain D itself may be uncertain.

In forward uncertainty quantification, one is interested in assessing how
uncertainties in the inputs of a mathematical model affect the output.
⇒ If the uncertain inputs are modeled as random fields, then the output
of the PDE is also a random field. One may be interested in assessing the
statistical response of the system, for example, the expectation or variance
of the PDE solution (or some other quantity of interest thereof).

9



High-dimensional numerical integration∫
[0,1]s

f (y) dy ≈
n∑

i=1

wi f (t i )
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Figure: Tensor product grid, sparse grid, Monte Carlo nodes (not QMC rules)
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Figure: Sobol′ points, lattice rule (examples of QMC rules) 10



Quasi-Monte Carlo (QMC) methods are a class of equal weight cubature
rules ∫

[0,1]s
f (y) dy ≈ 1

n

n∑
i=1

f (t i ),

where (t i )ni=1 is an ensemble of deterministic nodes in [0, 1]s .

The nodes (t i )ni=1 are NOT random! Instead, they are deterministically
chosen.

QMC methods exploit the smoothness and anisotropy of an integrand in
order to achieve better-than-Monte Carlo rates.
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Course contents

Preliminaries: Hilbert spaces, Sobolev spaces, elliptic partial
differential equations (PDEs)

Finite element (FE) method

Modeling random field inputs

Elliptic PDEs with random coefficients

Quasi-Monte Carlo (QMC) methods

QMC-FE methods for uncertainty quantification of elliptic PDEs with
random coefficients

12



Preliminary functional analysis
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Inner product space

A real vector space X is an inner product space if there exists a mapping
⟨·, ·⟩ : X × X → R satisfying

⟨ax1 + bx2, y⟩ = a⟨x1, y⟩+ b⟨x2, y⟩ for all x1, x2, y ∈ X and a, b ∈ R;
⟨x , y⟩ = ⟨y , x⟩ for all x , y ∈ X ;

⟨x , x⟩ ≥ 0 for all x ∈ X , where equality holds iff x = 0.
A mapping ⟨·, ·⟩ satisfying these conditions is called an inner product.

Example

i) Rn = {(x1, . . . , xn) | xk ∈ R}. Then the inner product is the Euclidean dot product

⟨x , y⟩ =
n∑

k=1

xkyk , x = (x1, . . . , xn), y = (y1, . . . , yn).

ii) Let X = C([a, b]) = {f | f : [a, b] → R is continuous} and define

⟨f , g⟩ =
∫ b

a
f (x)g(x)dx .

Then this is an inner product on C([a, b]).
iii) Let X = ℓ2(R) =

{
(zk )

∞
k=1 |

∑∞
k=1 |zk |2 < ∞

}
. Then ℓ2(R) is an inner product space when

⟨x , y⟩ =
∞∑
k=1

xkyk , x = (x1, x2, . . .), y = (y1, y2, . . .).

14



Definition

A real vector space X is a normed space if there exists a mapping
∥ · ∥ : X → R satisfying

∥ax∥ = |a|∥x∥ for all a ∈ R and x ∈ X ;

∥x∥ ≥ 0 for all x ∈ X , where equality holds iff x = 0.

∥x + y∥ ≤ ∥x∥+ ∥y∥ for all x , y ∈ X (triangle inequality).

If X is an inner product space, then it is a normed space in a canonical
way with the induced norm ∥ · ∥ : X → R defined by

∥x∥ =
√

⟨x , x⟩, x ∈ X .

The first two postulates follow immediately from the properties of inner
product spaces, the triangle inequality follows from the Cauchy–Schwarz
inequality.

Proposition (Cauchy–Schwarz inequality)

If (X , ⟨·, ·⟩) is an inner product space, then

|⟨x , y⟩| ≤ ∥x∥∥y∥ for all x , y ∈ X .
15



Proof. Let x , y ∈ X and t ∈ R. If x = 0 or y = 0, then the claim is trivial.
Suppose that x ̸= 0 ̸= y . Then

0 ≤ ⟨x + ty , x + ty⟩ = ∥x∥2 + 2t⟨x , y⟩+ t2∥y∥2.

This is a second degree polynomial w.r.t. t with at most 1 real root.
Hence,

discriminant ≤ 0 ⇔ 4|⟨x , y⟩|2 − 4∥x∥2∥y∥2 ≤ 0

⇔ |⟨x , y⟩|2 ≤ ∥x∥2∥y∥2.

Note that if y = ax , a ∈ R, then discriminant= 0 and Cauchy–Schwarz
holds with equality.

The triangle inequality is an immediate consequence of Cauchy–Schwarz:

∥x + y∥2 = ⟨x + y , x + y⟩ = ∥x∥2 + ∥y∥2 + 2⟨x , y⟩
≤ ∥x∥2 + ∥y∥2 + 2|⟨x , y⟩| ≤ ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥
= (∥x∥+ ∥y∥)2 for all x , y ∈ X .
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For our purposes, having an inner product is not enough. We need to
know that these spaces are also complete normed spaces.

Definition (Cauchy sequence)

A sequence (xk)
∞
k=1 of elements of (X , ∥ · ∥) is called a Cauchy sequence if

for all ε > 0, there exists N ∈ N such that

m, n > N ⇒ ∥xm − xn∥ < ε.

Definition (Complete space)

A normed space (X , ∥ · ∥) is complete if all Cauchy sequences in X
converge to an element of X .

Definition (Banach space)

A normed space (X , ∥ · ∥) which is complete with respect to ∥ · ∥ is a
Banach space.

Definition (Hilbert space)

An inner product space (H, ⟨·, ·⟩) which is complete with respect to
∥ · ∥ =

√
⟨·, ·⟩ defined by the inner product is a Hilbert space.

17



Example
i) Rn and ℓ2(R) are complete.
ii) C([a, b]) is not complete w.r.t. the norm

∥f ∥2 =
∫ b

a

|f (x)|2 dx .

Let a = −1, b = 1, and define

fn(x) :=


0, −1 ≤ x < 0,

nx , 0 ≤ x ≤ 1
n
,

1, 1
n
< x ≤ 1.

Then fn is continuous, and if H(x) = χ[0,1](x) =

{
0, −1 ≤ x ≤ 0,

1, 0 < x ≤ 1,
we have

∫ 1

−1

|fn(x)− H(x)|2 dx =

∫ 1/n

0

|nx − 1|2 dx =

∫ 1/n

0

(n2x2 − 2nx + 1) dx

=

[
n2x3

3
− nx2 + x

]x=1/n

x=0

=
1

3n
− 1

n
+

1

n
=

1

3n
n→∞−−−→ 0.

We have ∥fn − H∥ → 0, but H ̸∈ C([−1, 1]).

However, note that C([a, b]) is complete w.r.t. the sup-norm ∥f ∥∞ = supa≤x≤b |f (x)|,
but ∥ · ∥∞ ̸= ∥ · ∥ and there is no inner product inducing ∥ · ∥∞-norm (exercise). 18



If one wishes to consider function spaces equipped with inner product norms, one is led
to L2 spaces.

Definition

Let D ⊂ Rn be a Lebesgue measurable set. Then

L2(D) := {f | f : D → R measurable,

∫
D

|f (x)|2 dx <∞}.

We define the inner product

⟨f , g⟩L2(D) =

∫
D

f (x)g(x)dx , (1)

which induces the norm

∥f ∥L2(D) =

(∫
D

|f (x)|2 dx
)1/2

.

Theorem

L2(D) is a Hilbert space with the inner product (1).

Remark. In practice, we treat the elements of L2(D) (resp. Lp(D)) as functions. Strictly
speaking, elements of L2(D) (resp. Lp(D)) are equivalence classes of measurable
functions that are equal almost everywhere on D. That is, if f , g ∈ L2(D) and
f (x) = g(x) for almost every x ∈ D

’
then f and g represent the same element in L2(D).

This identification ensures that L2(D) is a true normed space (and in fact a Hilbert
space), since the norm is zero if and only if the function is zero almost everywhere. 19



Bounded linear operators in Hilbert spaces

Definition

Let X and Y be normed spaces with norms ∥ · ∥X and ∥ · ∥Y . A linear operator
A : X → Y is said to be bounded if there exists C > 0 such that

∥Ax∥Y ≤ C∥x∥X for all x ∈ X .

Lemma

Let (X , ∥ · ∥X ) and (Y , ∥ · ∥Y ) be normed spaces. Then a linear operator A : X → Y is
bounded iff

∥A∥ := ∥A∥X→Y := sup
∥x∥X≤1

∥Ax∥Y <∞. (operator norm)

Proof. “⇒” If there is C > 0 s.t. ∥Ax∥Y ≤ C∥x∥X for all x ∈ X , then clearly
∥A∥ = sup∥x∥X≤1 ∥Ax∥Y ≤ C .
“⇐” Let ∥A∥ <∞. Since ∥ x

∥x∥X
∥X = 1 for all x ̸= 0, from the linearity of A we infer

∥Ax∥Y
∥x∥X

= ∥A( x
∥x∥X

)∥Y ≤ ∥A∥ for all x ∈ X .

This implies the important estimate

∥Ax∥Y ≤ ∥A∥∥x∥X for all x ∈ X .
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A linear operator is continuous precisely when it is bounded.

Proposition

Let (X , ∥ · ∥X ) and (Y , ∥ · ∥Y ) be normed spaces and A : X → Y a linear operator. Then
the following are equivalent:

(i) A is a bounded operator;

(ii) A is continuous (in X);

(iii) A is continuous at one point x0 ∈ X.

Proof. (i) ⇒ (ii): if x , y ∈ X and ε > 0, then

∥x − y∥X ≤
ε

∥A∥ =: δ ⇒ ∥Ax − Ay∥Y
A linear
= ∥A(x − y)∥Y ≤ ∥A∥∥x − y∥X ≤ ε.

(ii) ⇒ (iii): trivial.
(iii) ⇒ (i): let A be continuous at x0 ∈ X . By definition, there exists δ > 0 such that

∥y − x0∥X ≤ δ ⇒ ∥Ay − Ax0∥Y ≤ 1.

If x ∈ X is such that ∥x∥X ≤ δ, then by taking y = x + x0:

∥Ax∥Y = ∥A(x + x0)− Ax0∥Y ≤ 1.

On the other hand, for any ∥x∥X ≤ 1, there holds ∥δx∥X = δ∥x∥X ≤ δ and thus

δ∥Ax∥Y = ∥A(δx)∥Y ≤ 1, i.e., ∥Ax∥Y ≤
1

δ
for all ∥x∥X ≤ 1.

Therefore ∥A∥ ≤ 1
δ
, meaning that A is bounded.
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Let H be a real Hilbert space.

Definition

Two elements x , y ∈ H are said to be orthogonal if ⟨x , y⟩ = 0.

Let M ⊂ H be a subset. The orthogonal complement of M in H is defined
as

M⊥ := {y ∈ H | ⟨x , y⟩ = 0 for all x ∈ M}.

We state the following easy consequences.

Lemma

For any subset M ⊂ H, M⊥ is a closed subspace of H and M ⊂ (M⊥)⊥.

Lemma

If M is a subspace of H, then (M⊥)⊥ = M.

Proof. Exercise.
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Proposition (Hilbert projection theorem)

Let M be a nonempty, closed, and convex† subset of a real Hilbert space H. Then there
exists a unique element x0 ∈ M satisfying

∥x0∥ ≤ ∥x∥ for all x ∈ M.

Proof. Let δ = inf{∥x∥ | x ∈ M}. We use the parallelogram identity
∥u + v∥2 + ∥u − v∥2 = 2∥u∥2 + 2∥v∥2 (exercise) applied to vectors u = 1

2
x and v = 1

2
y ,

x , y ∈ M, to obtain

1

4
∥x − y∥2 = 1

2
∥x∥2 + 1

2
∥y∥2 −

∥∥∥∥x + y

2

∥∥∥∥2

.

Due to convexity 1
2
(x + y) ∈ M, so

∥x − y∥2 ≤ 2∥x∥2 + 2∥y∥2 − 4δ2 for all x , y ∈ M. (2)

Existence: let (xk)
∞
k=1 ⊂ M s.t. ∥xk∥

k→∞−−−→ δ. Substituting x ← xn and y ← xm in (2)
yields ∥xn − xm∥2 ≤ 2∥xn∥2 + 2∥xm∥2 − 4δ2, since 1

2
(xn + xm) ∈ M for all n,m. Thus

∥xn − xm∥ → 0 as n,m→∞. (xk)
∞
k=1 is Cauchy in the Hilbert space H, so there exists

x0 := limk→∞ xk ∈ H. Since ∥ · ∥ is continuous, ∥x0∥ = limk→∞ ∥xk∥ = δ. Since M is
closed and (xk)

∞
k=1 ⊂ M, the limit x0 ∈ M.

Uniqueness: If ∥x∥ = ∥y∥ = δ ⇒ ∥x − y∥2 ≤ 0 by (2) and so x = y .

†tx + (1− t)y ∈ M for all x , y ∈ M, t ∈ (0, 1).
23



Corollary

Let H be a real Hilbert space, M a nonempty, closed, and convex subset of
H, and x ∈ H. Then there exists a unique element y0 ∈ M such that

∥x − y0∥ = inf{∥x − y∥ | y ∈ M}.

Proof. The set x −M := {x − y | y ∈ M} is closed and convex, and
min{∥x − y∥ | x − y ∈ x −M} = min{∥x − y∥ | y ∈ M}. The claim
follows from the previous result.

Proposition (Orthogonal decomposition)

If M is a closed subspace of a real Hilbert space H, then

H = M ⊕M⊥,

which means that every element y ∈ H can be uniquely represented as

y = x + x⊥, x ∈ M, x⊥ ∈ M⊥.
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Proof. It suffices to prove that M ∩M⊥ = {0} and M +M⊥ = H.
• If x ∈ M ∩M⊥, then 0 = ⟨x , x⟩ = ∥x∥2 (i.e., x ⊥ x) so x = 0.
∴ M ∩M⊥ = {0}.
• Let x ∈ H. The Hilbert projection theorem guarantees that there exists
a unique y0 ∈ M such that

∥x − y0∥ ≤ ∥x − y∥ for all y ∈ M. (3)

Let x0 = x − y0 so that x = y0 + x0 ∈ M + x0. It remains to show that
x0 ∈ M⊥.
The inequality (3) can be written as

∥x0∥ ≤ ∥z∥ for all z ∈ x −M.

Since y0 ∈ M and M is a vector space, y0 +M = M and M = −M which
implies x −M = x +M = y0 + x0 +M = x0 +M. The previous inequality
can be recast as

∥x0∥ ≤ ∥z∥ for all z ∈ x0 +M ⇔ ∥x0∥ ≤ ∥x0 + z∥ for all z ∈ M.

This statement is true if and only if ⟨x0, z⟩ = 0 for all z ∈ M. Therefore
x0 ∈ M⊥.
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Let M be a closed subspace. The orthogonal decomposition implies that
every element y ∈ H can be uniquely represented as

y = x + x⊥, x ∈ M, x⊥ ∈ M⊥.

Lemma

Let M ⊂ H be a closed subspace. The mapping PM : H → M, y 7→ x, is
an orthogonal projection, i.e., P2

M = PM and Ran(PM) ⊥ Ran(I − PM). It
satisfies the following properties:

PM is linear;

∥PM∥ = 1 if M ̸= {0};
I − PM = PM⊥ ;

∥y − PMy∥ ≤ ∥y − z∥ for all z ∈ M;

y ∈ M ⇒ PMy = y , (I − PM)y = 0;
y ∈ M⊥ ⇒ PMy = 0, (I − PM)y = y.

∥y∥2 = ∥PMy∥2 + ∥(I − PM)y∥2 (Pythagoras)

Proof. See for example [Rudin, Real and Complex Analysis, pp. 34–35].
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Example

Let H1 and H2 be real Hilbert spaces and let A : H1 → H2 be a continuous
linear operator.

The kernel (or null space) of operator A is defined as

Ker(A) := {x ∈ H1 | Ax = 0}.

The range (or image) of operator A is defined as

Ran(A) := {y ∈ H2 | y = Ax , x ∈ H1}.

Then we have the following:

Ker(A) is a closed subspace of H1, and Ran(A) is a subspace of H2.

H1 = Ker(A)⊕ (Ker(A))⊥.

H2 = Ran(A)⊕ (Ran(A))⊥.
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We denote

L(X ,Y ) := {A | A : X → Y is bounded and linear}.

Proposition

Let X and Y be normed spaces. If Y is complete, then L(X ,Y ) is
complete w.r.t. the operator norm (i.e., it is a Banach space).

Proof. Let x ∈ X and assume that Ak ∈ L(X ,Y ), k ∈ N, is a Cauchy
sequence. If x = 0, then Ak0 = 0 and the limit A(0) := limk→∞ Ak0 = 0
trivially exists. On the other hand, if x ̸= 0, then for all ε > 0, there exists
N ∈ N such that

m, n > N ⇒ ∥Am − An∥ <
ε

∥x∥X
.

Especially,

∥Amx − Anx∥Y ≤ ∥Am − An∥∥x∥X < ε when m, n > N,

so (Akx) is a Cauchy sequence in Y and therefore the limit

A(x) := lim
k→∞

Akx

exists. 28



It is easy to see that A(x) := limk→∞ Akx is linear. It is also bounded:
there exists N ∈ N such that

m, n > N ⇒ ∥Am − An∥ < 1.

Fix m > N. Then for all n > m,

∥An∥ < 1 + ∥Am∥

and thus
∥Anx∥Y ≤ (1 + ∥Am∥)∥x∥X .

But ∥Ax∥Y = limn→∞ ∥Anx∥Y ≤ (1 + ∥Am∥)∥x∥X . Therefore A is
bounded.
Finally, we need to show that ∥An −A∥ → 0 as n → ∞. Since we assumed
(Ak)

∞
k=1 to be Cauchy, let ε > 0 be s.t. for m, n > N, there holds

∥Am − An∥ < ε. Then

∥(A− An)x∥Y = lim
m→∞

∥Amx − Anx∥Y ≤ ε∥x∥X for all x ∈ X

⇒ ∥A− An∥ < ε.

Hence ∥A− An∥ → 0 as n → ∞.
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If X = H1 and Y = H2 are Hilbert spaces, then L(H1,H2) is a complete
normed space.

Definition

Let H be a Hilbert space. The space H ′ := L(H,R) is called the
topological dual space of H.

Corollary

If H is a Hilbert space, then H ′ is complete w.r.t. the operator norm.

Proof. This is an immediate consequence of the previous proposition since
R is a complete Hilbert space.

Remark. In general, L(H1,H2) is not a Hilbert space even when both H1

and H2 are. However, in the special case H ′ = L(H,R) it turns out that
indeed one can associate an inner product that induces the operator norm
∥ · ∥ – meaning that H ′ is a Hilbert space! This is made possible by the
Riesz representation theorem.
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Existence results
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Proposition (Riesz representation theorem)

Let H be a real Hilbert space. If A : H → R is a bounded linear functional,
i.e., A is linear and there exists C > 0 such that

|A(x)| ≤ C∥x∥ for all x ∈ H,

then there exists a unique y ∈ H such that

A(x) = ⟨x , y⟩ for all x ∈ H.

Proof. If A ≡ 0, then y = 0 and this is unique. Suppose A ̸= 0 and let

M := Ker(A) = {x ∈ H | A(x) = 0}.

Since A is continuous, M is a closed subspace of H. Furthermore, by the
orthogonal decomposition H = M ⊕M⊥, our assumption A ̸= 0 implies
that M ̸= H ⇒ M⊥ ̸= {0}.
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Let x ∈ H and z ∈ M⊥ with ∥z∥ = 1. Define

u := A(x)z − A(z)x .

Then
A(u) = A(x)A(z)− A(z)A(x) = 0

meaning that u ∈ M. In particular ⟨u, z⟩ = ⟨A(x)z − A(z)x , z⟩ = 0 and

A(x) = A(x) ⟨z , z⟩︸ ︷︷ ︸
=∥z∥2=1

= ⟨A(x)z , z⟩

= ⟨A(z)x , z⟩ = A(z)⟨x , z⟩ = ⟨x , zA(z)⟩.

∴ The element y = zA(z) satisfies A(x) = ⟨x , y⟩.
To prove uniqueness, suppose that there exist y1, y2 ∈ H such that

A(x) = ⟨x , y1⟩ = ⟨x , y2⟩.

Then ⟨x , y1 − y2⟩ = 0 for all x ∈ H. Choose x = y1 − y2. Then

0 = ⟨y1 − y2, y1 − y2⟩ = ∥y1 − y2∥2 ⇔ y1 = y2.

33



The Riesz operator

Let x ∈ H and consider the linear mapping fx : H → R, z 7→ ⟨z , x⟩H . Note that fx ∈ H ′

since it follows from the Cauchy–Schwarz inequality that

|fx(z)| = |⟨z , x⟩H | ≤ ∥z∥H∥x∥H for all z ∈ H. (4)

Now define the Riesz operator RH : H → H ′ as x 7→ fx .

RH is linear: RH(ax1 + bx2) = fax1+bx2 = ⟨·, ax1 + bx2⟩H = a⟨·, x1⟩H + b⟨·, x2⟩H =
afx1 + bfx2 = aRHx1 + bRHx2 for x1, x2 ∈ H, a, b ∈ R.
RH is an isometry (∥RHx∥H′ = ∥x∥H): it follows from (4) that
∥RHx∥H′ = ∥fx∥H′ = sup∥z∥H≤1 |⟨z , x⟩H | ≤ ∥x∥H . The other direction follows from

∥x∥2H = ⟨x , x⟩H = fx(x) = |fx(x)| ≤ ∥fx∥H′∥x∥H = ∥RHx∥H′∥x∥H .
RH is injective (one-to-one): let RHx = RHy for some x , y ∈ H. From linearity,
RH(x − y) = 0 ⇒ fx−y = 0 ⇒ ⟨x − y , z⟩H = 0 for all z ∈ H ⇒ x = y .

RH is surjective (onto): by Riesz representation theorem, given A ∈ H ′, there
exists a unique x ∈ H satisfying A(z) = ⟨z , x⟩H = fx(z) for all z ∈ H. In other
words, A = ⟨·, x⟩H = fx = RHx .

∴ The Riesz operator RH : H → H ′ is a bijective linear operator isometry.

Lemma

Let H be a Hilbert space. The dual space H ′ := L(H,R) is a Hilbert space induced by

∥A∥H′ := sup
∥x∥H≤1

|Ax | =
√
⟨A,A⟩H′ , ⟨A,B⟩H′ := ⟨R−1

H A,R−1
H B⟩H .
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Adjoint operator

Proposition

Let H1 and H2 be real Hilbert spaces and suppose that A ∈ L(H1,H2). Then there exists
a unique bounded linear operator A∗ : H2 → H1, called the adjoint of A, satisfying
⟨Ax , y⟩H2 = ⟨x ,A∗y⟩H1 . Moreover, ∥A∥H1→H2 = ∥A∗∥H2→H1 .

Proof. Let y ∈ H2 and consider Ty : H1 → R, x 7→ ⟨Ax , y⟩H2 . Clearly, Ty is linear and
bounded so by the Riesz representation theorem there exists a unique z ∈ H1 s.t.

⟨Ax , y⟩H2 = Ty (x) = ⟨x , z⟩H1 for all x ∈ H1.

Define A∗y := z .

Let a, b ∈ R and y1, y2 ∈ H2. Linearity follows from
⟨x ,A∗(ay1 + by2)⟩ = ⟨Ax , ay1 + by2⟩ = a⟨Ax , y1⟩+ b⟨Ax , y2⟩ =
a⟨x ,A∗y1⟩+ b⟨x ,A∗y2⟩ = ⟨x , aA∗y1 + bA∗y2⟩. Since x ∈ H1 was arbitrary,
A∗(ay1 + by2) = aA∗y1 + bA∗y2.

∥A∗∥H2→H1 = sup∥y∥H2
≤1 ∥A∗y∥H1

(∗)
= sup∥y∥H2

≤1 sup∥x∥H1
≤1 |⟨A∗y , x⟩|

= sup∥y∥H2
≤1 sup∥x∥H1

≤1 |⟨y ,Ax⟩|
(∗)
= sup∥x∥H1

≤1 ∥Ax∥H2 = ∥A∥H1→H2 <∞.

.(∗)Let Λ ∈ L(H,K),H,K Hilbert spaces. Cauchy–Schwarz: sup∥y∥K≤1 |⟨Λx , y⟩K | ≤ ∥Λx∥K .
Other direction: sup∥y∥K≤1 |⟨Λx , y⟩K | ≥ |⟨Λx , 1

∥Λx∥K
Λx⟩|K = ∥Λx∥K .

∴ ∥Λx∥K = sup∥y∥K≤1 |⟨Λx , y⟩K |. 35



Some properties of the adjoint operator

Proposition

Let H1 and H2 be real Hilbert spaces and suppose that A,B ∈ L(H1,H2). Then

(i) ∥A∗A∥H1→H1 = ∥A∥2H1→H2
;

(ii) A∗∗ = A, where A∗∗ = (A∗)∗;

(iii) (c1A+ c2B)∗ = c1A
∗ + c2B

∗, c1, c2 ∈ R.

Proof. (i) Let x ∈ H1, ∥x∥H1 = 1. By the Cauchy–Schwarz inequality,

∥Ax∥2H2
= ⟨Ax ,Ax⟩H2 = ⟨x ,A

∗Ax⟩H1 ≤ ∥A
∗Ax∥H1 ⇒ ∥A∥2H1→H2

≤ ∥A∗A∥H1→H1 .

Other direction: ∥A∗A∥ ≤ ∥A∗∥ · ∥A∥ = ∥A∥2.
(ii) If x ∈ H1 and y ∈ H2, then

⟨A∗∗x , y⟩H2 = ⟨x ,A
∗y⟩H1 = ⟨A

∗y , x⟩H1 = ⟨y ,Ax⟩H2 = ⟨Ax , y⟩H2 .

Hence ⟨A∗∗x − Ax , y⟩H2 = 0 for all y ∈ H2 ⇒ A∗∗x = Ax for all x ∈ H1 ⇒ A∗∗ = A.
(iii) Let x ∈ H1 and y ∈ H2. Then

⟨(c1A+ c2B)∗y , x⟩H1 = ⟨y , (c1A+ c2B)x⟩H2 = c1⟨y ,Ax⟩H2 + c2⟨y ,Bx⟩H2

= c1⟨A∗y , x⟩H1 + c2⟨B∗y , x⟩H1 = ⟨(c1A
∗ + c2B

∗)y , x⟩H1 .

Similarly to the previous part, we conclude that (c1A+ c2B)∗ = c1A
∗ + c2B

∗.
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Self-adjoint operators

Definition

Let H be a Hilbert space. The operator A ∈ L(H) := L(H,H) is called self-adjoint if
A∗ = A, i.e.,

⟨Ax , y⟩ = ⟨x ,Ay⟩ for all x , y ∈ H.

Example

Let H be a Hilbert space and let A,B ∈ L(H) be self-adjoint operators. Then

(i) A+ B is self-adjoint.

(ii) if c ∈ R, then cA is self-adjoint.

(iii) if AB = BA, then AB is self-adjoint.

Parts (i) and (ii) follow immediately from part (iii) on the previous slide. If x , y ∈ H,
then

⟨ABx , y⟩ = ⟨BAx , y⟩ = ⟨Ax ,By⟩ = ⟨x ,ABy⟩ ⇒ (AB)∗ = AB.

Example

Let H be a Hilbert space and M ⊂ H a closed subspace. Then the orthogonal
projections PM : H → M and I − PM =: PM⊥ : H → M⊥ are self-adjoint.
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Lax–Milgram lemma

Proposition (Lax–Milgram lemma)

Let H be a real Hilbert space and let B : H × H → R be a bilinear
mapping† with C , c > 0 such that

|B(u, v)| ≤ C∥u∥ · ∥v∥ for all u, v ∈ H, (boundedness)

B(u, u) ≥ c∥u∥2 for all u ∈ H. (coercivity)

Let F : H → R be a bounded linear mapping. Then there exists a unique
element u ∈ H satisfying

B(u, v) = F (v) for all v ∈ H

and

∥u∥ ≤ 1

c
∥F∥.

†B(u + v ,w) = B(u,w) + B(v ,w), B(au, v) = aB(u, v),
B(u, v + w) = B(u, v) + B(u,w), B(u, av) = aB(u, v)
for all u, v ,w ∈ H and a ∈ R.

38



Proof. We split the proof into several steps.
Step 1. Let v ∈ H be fixed. Then the mapping

T : w 7→ B(v ,w), H → R,

is bounded and linear. It follows from the Riesz representation theorem
that there exists a unique element a ∈ H with

Tw = ⟨a,w⟩ for all w ∈ H.

Let us define the mapping A : H → H by setting

Av = a.

Then
B(v ,w) = ⟨Av ,w⟩ for all v ,w ∈ H.
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Step 2. We show that the mapping A : H → H is linear and bounded.
Clearly,

⟨A(c1v1 + c2v2),w⟩ = B(c1v1 + c2v2,w)

= c1B(v1,w) + c2B(v2,w)

= ⟨c1Av1 + c2Av2,w⟩

for all w ∈ H, so A(c1v1 + c2v2) = c1Av1 + c2Av2. Moreover,

∥Av∥2 = ⟨Av ,Av⟩
= B(v ,Av)

≤ C∥v∥∥Av∥

which implies that
∥Av∥ ≤ C∥v∥.
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Step 3. We show that {
A is one-to-one,

Ran(A) = AH is closed in H.

We begin by noting that

c∥v∥2 ≤ B(v , v) = ⟨Av , v⟩ ≤ ∥Av∥∥v∥

and thus

∥Av∥ ≥ c∥v∥ for all v ∈ H. (5)

Especially
Av = Aw ⇒ A(v − w) = 0 ⇒ 0 = ∥A(v − w)∥ ≥ c∥v − w∥ ≥ 0 ⇒ v = w

so A is one-to-one.
To see that Ran(A) is closed, let yj = Axj ∈ Ran(A). The goal is to show that
y := limj→∞ yj ∈ Ran(A). We observe that

lim
j,k→∞

∥xj − xk∥
(5)

≤ lim
j,k→∞

1

c
∥yj − yk∥ = 0,

i.e., (xj)
∞
j=1 is Cauchy and x := limj→∞ xj ∈ H exists by completeness. Moreover,

lim
j→∞
∥Axj − Ax∥ ≤ lim

j→∞
∥A∥∥xj − x∥ ≤ C lim

j→∞
∥xj − x∥ = 0

and therefore
y = lim

j→∞
Axj = Ax ∈ Ran(A).
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Step 4. We show that Ran(A) = H. We prove this by contradiction:
suppose that Ran(A) = Ran(A) ̸= H. Then there exists w ∈ Ran(A)⊥,
w ̸= 0.† This implies that

∥w∥2 ≤ 1

c
B(w ,w) =

1

c
⟨Aw ,w⟩ = 0,

i.e., w = 0. This contradiction shows that Ran(A) = H. Therefore
A : H → H is a continuous bijection.
Step 5. Existence of a solution. We use the Riesz representation theorem:
since F : H → R is linear and continuous, there exists b ∈ H such that

F (v) = ⟨b, v⟩ for all v ∈ H.

Define u := A−1b. Hence

Au = b ⇔ ⟨Au, v⟩ = ⟨b, v⟩ for all v ∈ H

⇔ B(u, v) = F (v) for all v ∈ H.

†Since (Ran(A)⊥)⊥ = Ran(A) ̸= H ⇒ (Ran(A))⊥ ̸= {0}.
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Step 6. Uniqueness. Suppose that

B(u1,w) = F (w) for all w ∈ H,

B(u2,w) = F (w) for all w ∈ H.

Let u := u1 − u2. By linearity,

B(u,w) = 0 for all w ∈ H.

The coercivity of B implies that

∥u∥2 ≤ 1

c
B(u, u) = 0

so that u = 0, i.e., u1 = u2.
Step 7. A priori bound. If B(u,w) = F (w) for all w ∈ H, then by setting
w = u we obtain

∥u∥2 ≤ 1

c
B(u, u) =

1

c
F (u) ≤ 1

c
∥F∥∥u∥

which immediately yields

∥u∥ ≤ 1

c
∥F∥.
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Density argument

Lemma
Let X ,Y be Banach spaces and let Z ⊂ X be a dense subspace. If
T : Z → Y is a linear mapping such that

∥Tx∥Y ≤ C∥x∥X , x ∈ Z , (6)

then there exists a unique extension T̃ : X → Y with T̃ |Z = T and

∥T̃ x∥Y ≤ C∥x∥X , x ∈ X . (7)

Moreover, if (6) holds with equality, then so does (7).

Proof. Let x ∈ X . Because Z ⊂ X is dense, there exists a sequence (zk)
∞
k=1 ⊂ Z

s.t. ∥zk − x∥X
k→∞−−−→ 0. Let ε > 0. Since (zk)

∞
k=1 is a Cauchy sequence, there exists

N ∈ N s.t.
m, n ≥ N ⇒ ∥zm − zn∥X <

ε

C
.

Then there holds

∥Tzm − Tzn∥Y = ∥T (zm − zn)∥Y ≤ C∥zm − zn∥X < ε,

which means that (Tzk)
∞
k=1 is a Cauchy sequence in Y . Since Y is complete, there

exists y := limk→∞ Tzk . Hence we may define T̃ : X → Y by setting T̃ (x) = y . 44



We begin by showing that T̃ is well-defined. Let (zk)
∞
k=1, (z̃k)

∞
k=1 be two sequences in Z

s.t. zk , z̃k
k→∞−−−→ x in X . Then

∥Tzk − Tz̃k∥Y = ∥T (zk − z̃k)∥Y ≤ C∥zk − z̃k∥ ≤ C∥zk − x∥+ C∥z̃k − x∥ k→∞→ 0.

Recalling that T̃ (x) := limk→∞ Tzk , we obtain

∥Tz̃k − T̃ (x)∥ ≤ ∥Tz̃k − Tzk∥+ ∥Tzk − T̃ (x)∥ k→∞→ 0,

showing that T̃ is well-defined.

Next we show that T̃ is linear. Let x , x̃ ∈ X and a, b ∈ R. Let Z ∋ zk
k→∞−−−→ x and

Z ∋ z̃k
k→∞−−−→ x̃ . Now ax + bx̃ ∈ X and Z ∋ azk + bz̃k → ax + bx̃ . Thus

T̃ (ax + bx̃) = lim
k→∞

T (azk + bz̃k) = a lim
k→∞

Tzk + b lim
k→∞

Tz̃k = aT̃x + bT̃x ,

since the limit is linear.†

Since the norm is continuous,

∥T̃ x∥ = ∥ lim
k→∞

Txk∥ = lim
k→∞

∥Txk∥ ≤ C lim
k→∞

∥xk∥ = C∥x∥.
Finally, T̃ |Z = T holds by construction and the uniqueness of the limit Tzk → y ensures
that there cannot exist another mapping L : X → Y s.t. L|Z = T and ∥Lx∥ ≤ C∥x∥.

†Let y := limk→∞ Tzk and ỹ := limk→∞ Tz̃k .
Then ∥T (azk + bz̃k)− ay − bỹ∥ ≤ a∥Tzk − y∥+ b∥Tz̃k − ỹ∥ → 0.
Hence limk→∞ T (azk + bz̃k) = a limk→∞ Tzk + b limk→∞ Tz̃k .
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Multi-index notation
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A vector of the form α := (α1, . . . , αd) ∈ Nd
0 is called a multi-index. We

denote the j th component of multi-index α by αj .

The order (or modulus) of a multi-index is defined as

|α| := α1 + · · ·+ αd .

Let x := (xj)
d
j=1 ∈ Rd . We define the monomial notation

xα :=
d∏

j=1

x
αj

j ,

where 00 := 1, and the corresponding formula for partial derivatives

∂α := ∂α
x :=

d∏
j=1

∂αj

∂x
αj

j

.

Other often used multi-index notations include
(
α
β

)
:=

∏d
j=1

(αj

βj

)
,

α! := α1! · · ·αd ! (but |α|! := (α1 + · · ·+ αd)!), etc.
47



Some function spaces

Let D ⊂ Rd be a nonempty open set. Let us recall the following function
spaces.

Definition
C (D) := {u : D → R | u is continuous},
C k(D) := {u : D → R | ∃∂αu is continuous for all |α| ≤ k , α ∈ Nd

0},

C∞(D) := {u : D → R | ∃∂αu is continuous for all α ∈ Nd
0} =

∞⋂
k=0

C k(D),

C k
0 (D) := {u ∈ C k(D) | supp(u) ⊂ D is a compact set},

C∞
0 (D) := {u ∈ C∞(D) | supp(u) ⊂ D is a compact set},

where supp(u) := {x ∈ D | u(x) ̸= 0},

L1(D) := {u : D → R | u is measurable, ∥u∥L1(D) :=

∫
D
|u(x)|dx < ∞}.

Remark. Recall that in the Euclidean space Rd , a set is compact iff it is
closed and bounded. This is the Heine–Borel theorem.
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Let D ⊂ Rd be open.

Definition

L1loc(D) := {u : D → R | u ∈ L1(K ) for all compact K ⊂ D}

Example

Let u ∈ C 1(D). Then integration by parts yields∫
D
u(x)∂xiφ(x) dx = −

∫
D
∂xiu(x)φ(x)dx for all φ ∈ C∞

0 (D). (8)

If u ∈ C k(D) and α ∈ Nd
0 is a multi-index with order

|α| := ν1 + · · ·+ νd = k, then we obtain from repeated application of (8)
that∫

D
u(x)∂αφ(x)dx = (−1)|α|

∫
D
∂αu(x)φ(x)dx for all φ ∈ C∞

0 (D).
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The so-called weak derivative is a generalization of the classical derivative.

Definition (Weak derivative)

Let u,w ∈ L1loc(D). We call w the weak ∂xi derivative of u and denote
w = ∂xiu if∫

D
w(x)φ(x) dx = −

∫
D
u(x)∂xiφ(x) dx for all φ ∈ C∞

0 (D).

Moreover, we call w the weak ∂α derivative of u and denote w = ∂αu if∫
D
w(x)φ(x) dx = (−1)|α|

∫
D
u(x)∂αφ(x) dx for all φ ∈ C∞

0 (D).

This definition ensures that the integration by parts formula is valid if the
weak derivative exists.

Remark. This definition generalizes the classical derivative: if u ∈ C 1(D),
then the weak derivative coincides with the classical one.

50



Weak derivative

Example

Let d = 1, D = (0, 2), and

u(x) =

{
x if 0 < x ≤ 1,

1 if 1 ≤ x < 2.

Define

v(x) =

{
1 if 0 < x ≤ 1,

0 if 1 ≤ x < 2.

We claim u′ = v in the weak sense, i.e.,
∫ 2

0
u(x)φ′(x) dx = −

∫ 2

0
v(x)φ(x)dx for all

φ ∈ C∞
0 (D). Let φ ∈ C∞

0 (D) be arbitrary. Then∫ 2

0

u(x)φ′(x) dx =

∫ 1

0

xφ′(x) dx +

∫ 2

1

φ′(x) dx

=
[
xφ(x)

]∣∣∣∣x=1

x=0︸ ︷︷ ︸
=��φ(1)−0

−
∫ 1

0

φ(x) dx + φ(2)︸︷︷︸
=0

−��φ(1) = −
∫ 1

0

φ(x)dx = −
∫ 2

0

v(x)φ(x)dx

as desired.
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Sobolev spaces
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Sobolev spaces

Definition

The Sobolev space of order k based on L2(D) is defined by

Hk(D) := {u ∈ L2(D) | ∂αu ∈ L2(D) for all |α| ≤ k},

and we equip this space with the norm

∥u∥Hk (D) =

( ∑
|α|≤k

∫
D

|∂αu(x)|2 dx
)1/2

,

induced by the inner product

⟨u, v⟩Hk (D) =
∑

|α|≤k

∫
D

∂αu(x)∂αv(x)dx .

Moreover, we define
Hk

0 (D) := clHk (D)(C
∞
0 (D)),

i.e., Hk
0 (D) is the closure of C∞

0 (D) in the topology of Hk(D).
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Proposition

∂α : Hk(D) → Hk−|α|, k ≥ |α|, is bounded.
∂α(∂βu) = ∂β(∂αu) = ∂α+βu, u ∈ H |α|+|β|(D), where
α+ β := (α1 + β1, . . . , αd + βd).
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Proposition

Hk(D) is a Hilbert space for all k ∈ N.

Proof. Let (uj)
∞
j=1 be a Cauchy sequence in Hk(D). Then for all |α| ≤ k

∥Dαum − Dαun∥L2(D) ≤ ∥um − un∥Hk
m,n→∞−−−−−→ 0,

so (Dαuj)
∞
j=1 is a Cauchy sequence in L2(D). Since L2(D) is complete,

there exists f α ∈ L2(D) such that ∥fα − Dαuj∥L2(D)
j→∞−−−→ 0.

Esp. uj
j→∞−−−→ f 0 := u in L2(D).

We show that Dαu ∈ L2(D) for all |α| ≤ k, i.e., u ∈ Hk(D). For
φ ∈ C∞

0 (D),∫
D
u(x)∂αφ(x)dx = lim

j→∞

∫
D
uj(x)∂αφ(x)dx

= lim
j→∞

∫
D
(−1)|α|∂αuj(x) · φ(x) dx

=

∫
D
(−1)|α|f α(x) · φ(x)dx

so ∂αu = f α ∈ L2(D), |α| ≤ k . Thus u ∈ Hk(D). 55



Finally,

∥uj − u∥2Hk (D) =
∑
|α|≤k

∥∂αuj − f α∥2L2(D)

j→∞−−−→ 0

which means that
lim
j→∞

uj = u in Hk(D).
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The case when D is a polygon (2D) or a polyhedron (3D) will be of
special interest to us. In these cases, the boundary ∂D is not smooth,
which needs to be accounted for by our theory. However, it turns out that
working with Lipschitz domains is sufficient for our purposes. To this end,
we recall the following.

Definition

Let D ⊂ Rd be a bounded, open set. A function u : D → R is Lipschitz
continuous if there exists L > 0 such that

|u(x)− u(y)| ≤ L|x − y |, x , y ∈ D.

Theorem (Rademacher’s theorem)

If D ⊂ Rd is an open subset and f : D → R is Lipschitz continuous, then f
is differentiable almost everywhere in D.

A Lipschitz hypograph D ⊂ Rd is a domain of the form

D = {x ∈ Rd | xd > ζ(x ′), x ′ := (x1, . . . , xd−1) ∈ Rd}
where ζ : Rd−1 → R is a Lipschitz function.
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Definition (bounded Lipschitz domain)

An open, bounded set is a Lipschitz domain if its boundary ∂D is compact
and if there exist {Wj}Nj=1 and {Dj}Nj=1 with the following properties:

(i) {Wj}Nj=1 is a finite open cover of ∂D, i.e., each Wj ⊂ Rd is an open

set and ∂D ⊂
⋃N

j=1Wj .

(ii) Each Dj can be transformed into a Lipschitz hypograph by a rotation
plus a translation.

(iii) Wj ∩ D = Wj ∩ Dj for all j ∈ {1, . . . ,N}.

The class of Lipschitz domains is broad enough to cover most cases that
arise in applications of partial differential equations. For example, any
polygon in R2 or convex polyhedron in R3 is a Lipschitz domain. If
κ : Rd → Rd is a C 1 diffeomorphism and D is a Lipschitz domain, then
the set κ(D) is again a Lipschitz domain.

Note that the outer normal vector is defined a.e. at the boundary and it is
a.e. continuous.
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Trace theorem on Lipschitz domains

Theorem

Let D be a bounded Lipschitz domain and let γ : C∞(D) → C∞(∂D) be
the trace operator γu = u|∂D . Then the trace operator has a unique
extension to a bounded linear operator γ : H1(D) → L2(∂D).

The significance of the trace theorem is that the boundary values of
Sobolev functions belonging to H1(D) are well-defined in an unambiguous
way.
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Trace zero functions in H1
0 (D)

Theorem

Let D ⊂ Rd be a bounded Lipschitz domain, u ∈ H1(D), and
γ : H1(D) → L2(∂D) the trace operator. Then

u ∈ H1
0 (D) ⇔ γu = 0: ∂D → R.

Proof. “⇒” follows from previous discussion. “⇐” is more difficult (see,
e.g., L.C. Evans “Partial Differential Equations” Section 5.5 for
details).

This implies in particular the characterization H1
0 (D) = Ker(γ), meaning

that elements in H1
0 (D) are precisely those elements in H1(D) with zero

trace.
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Definition
Let ∥ · ∥ and ∥ · ∥∗ be two norms in a normed space X . The norms are
called equivalent if there exist constants c1, c2 > 0 such that

c1∥x∥∗ ≤ ∥x∥ ≤ c2∥x∥∗ for all x ∈ X .

The significance behind this notion lies in the fact that equivalent norms
induce the same topology on X . That is, ∥ · ∥ and ∥ · ∥∗ induce exactly the
same convergent sequences in X .

For our purposes, let A : X → Y be a mapping between two normed
spaces. Suppose that cX∥ · ∥X ,∗ ≤ ∥ · ∥X ≤ CX∥ · ∥X ,∗ and
cY ∥ · ∥Y ,∗ ≤ ∥ · ∥Y ≤ CY ∥ · ∥Y ,∗ for cX ,CX , cY ,CY > 0. If

∥A(x)∥Y ≤ K∥x∥X for some x ∈ X ,

then

∥A(x)∥Y ,∗ ≤
CXK

cY
∥x∥X ,∗ for some x ∈ X .

We can change between equivalent norms rather liberally since any results
about boundedness, stability, etc., proved using one norm remain true for
equivalent norms up to a trivial scaling of the (typically generic)
coefficient.
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Proposition (Poincaré inequality)

Let D ⊂ Rd be a bounded domain. Then there exists C > 0
(independently of u) such that

∥u∥L2(D) ≤ C∥∇u∥L2(D) for all u ∈ H1
0 (D).

Proof. Let φ ∈ C∞
0 (D). Since we assumed D is bounded, we may assume D ⊂ [−a, a]d

for suitably large a > 0. Extending φ by zero outside of D, we obtain

φ(x1, x2, . . . , xd) = φ(x1, x2, . . . , xd)− φ(−a, x2, . . . , xd)

=

∫ x1

−a

∂φ

∂x1
(t1, x2, . . . , xd) dt1.

By the Cauchy–Schwarz inequality,

|φ(x1, x2, . . . , xd)|2 ≤ 2a

∫ a

−a

∣∣∣∣ ∂φ∂x1 (t1, x2, . . . , xd)
∣∣∣∣2 dt1

⇒
∫ a

−a

|φ(x1, x2, . . . , xd)|2 dx1 ≤ 4a2
∫ a

−a

∣∣∣∣ ∂φ∂x1 (t1, x2, . . . , xd)
∣∣∣∣2 dt1.

Repeated integrations w.r.t. x2, x3, . . . , xd over [−a, a] together with the density of
C∞
0 (D) in H1

0 (D) prove the assertion.
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An equivalent norm in H1
0 (D)

For all u ∈ H1
0 (D), the norm

∥u∥H1
0 (D) := ∥∇u∥L2(D) :=

(∫
D
∥∇u(x)∥2 dx

)1/2

is equivalent to ∥u∥H1(D) := (∥u∥2L2(D) + ∥∇u∥2L2(D))
1/2.

This can be seen as an immediate consequence of the Poincaré inequality:

∥u∥2H1
0 (D) ≤ ∥u∥2L2(D) + ∥∇u∥2L2(D) ≤ (1 + C 2)∥u∥2H1

0 (D).
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Sobolev inequality

We mention the following result.

Theorem

Let D ⊂ Rd be a bounded Lipschitz domain and k > d/2. Then

Hk(D) ⊂ CB(D) := {v ∈ C (D) | v is bounded}

and there is a constant C > 0 s.t.

∥u∥CB(D) := sup
x∈D

|u(x)| ≤ C∥u∥H1(D) for all u ∈ H1(D).

Proof. Cf., e.g., Adams (1975) or Adams and Fournier (2003).

If d = 1, then u ∈ H1(D) has a continuous representative.

If d ∈ {2, 3}, then u ∈ H2(D) has a continuous representative.
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Elliptic PDEs
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Let D ⊂ Rd be an open and bounded Lipschitz domain. We consider the
problem {

−∇ · (a(x)∇u(x)) = f (x), x ∈ D,

u|∂D = 0,
(9)

where f : D → R is the source and a : D → R is the diffusion coefficient.

Uniform ellipticity assumption: There exist constants amax, amin > 0 such
that

0 < amin ≤ a(x) ≤ amax < ∞ for all x ∈ D.

Definition

Let a ∈ C 1(D) and f ∈ C (D). Then u ∈ C 2(D) is the classical solution
to (9) if (9) holds for all x ∈ D and u(y) = 0, y ∈ ∂D.

The requirement that f is continuous is usually much too restrictive for
practical applications.
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Definition (Strong solution)

Let a : D → R be Lipschitz and f ∈ L2(D). We call u ∈ H2(D) ∩ H1
0 (D) a

strong solution to (9) if

−∇ · (a(x)∇u(x)) = f (x) for a.e. x ∈ D,

where the derivatives are the weak derivatives.

Note that we also have the following.

Lemma

Let D ⊂ Rd be a bounded Lipschitz domain. Then for u, v ∈ H1(D),∫
D
∂xju(x)v(x)dx = −

∫
D
u(x)∂xjw(x) dx +

∫
∂D

nju|∂Dv |∂D dS ,

where ·|∂D : H1(D) → L2(∂D) is the trace operator.

Proof. The formula holds for u, v ∈ C∞(D). The assertion follows by
exploiting the density of C∞(D) in H1(D).
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If u is a strong solution to the PDE (9), then for all v ∈ C∞
0 (D)

⟨−∇ · (a∇u), v⟩L2(D) =

∫
D
−∇ · (a(x)∇u(x))v(x) dx

†
=

∫
D
a(x)∇u(x) · ∇v(x) dx +

∫
∂D

v(x)︸︷︷︸
=0

(a∇u(x) · n(x))dS

=

∫
D
a(x)∇u(x) · ∇v(x) dx =: B(u, v).

Define also

F (v) :=

∫
D
f (x)v(x)dx .

This leads us to consider the variational formulation

B(u, v) = F (v) for all v ∈ C∞
0 (D).

†∇ · (v(a∇u)) = a∇v · ∇u + v∇ · (a∇u) + divergence theorem
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The previous discussion motivates us to introduce the so-called weak
solution to (9).

Definition

Let a ∈ L∞(D) and f ∈ L2(D). Then u ∈ H1
0 (D) is called a weak solution

to (9) if

B(u, v) = F (v) for all v ∈ H1
0 (D), (10)

where

B(u, v) =

∫
D
a(x)∇u(x) · ∇v(x)dx

and

F (v) =

∫
D
f (x)v(x) dx .

Remark. It is sufficient to enforce (10) for all v ∈ C∞
0 (D). Moreover, the

definition can be extended for arbitrary F ∈ (H1
0 (D))′ =: H−1(D).
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Our variational problem is

B(u, v) = F (v) for all v ∈ H1
0 (D), (11)

where B(u, v) =
∫
D a(x)∇u(x) · ∇v(x) dx and F (v) =

∫
D f (x)v(x)dx .

Let us use the norm ∥v∥H1
0 (D) := ∥∇v∥L2(D), which is equivalent to the

usual Sobolev norm by Poincaré’s inequality.

Provided that we have uniform ellipticity, i.e.,
0 < amin ≤ a(x) ≤ amax < ∞ for all x ∈ D, then

B(u, v) =

∫
D
a(x)∇u(x) · ∇v(x)dx ≤ amax∥u∥H1

0 (D)∥v∥H1
0 (D)

for all u, v ∈ H1
0 (D) and

B(u, u) =

∫
D
a(x)∇u(x) · ∇u(x)dx ≥ amin∥u∥2H1

0 (D) for all u ∈ H1
0 (D).

∴ By the Lax–Milgram lemma, there exists a unique solution u ∈ H1
0 (D)

to (11) s.t. ∥u∥H1
0 (D) ≤

∥F∥H−1(D)

amin
.
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When does the weak solution coincide with the strong
solution?

If f ∈ L2(D), the diffusion coefficient a is smooth enough (e.g., Lipschitz),
and the boundary ∂D is “nice enough” (e.g., a convex polyhedron), then
u ∈ H2(D) ∩ H1

0 (D) and the weak solution coincides with the strong
solution. These considerations belong to the purview of elliptic regularity
theory.
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