
Uncertainty Quantification and Quasi-Monte Carlo
Sommersemester 2025

Vesa Kaarnioja
vesa.kaarnioja@fu-berlin.de

FU Berlin, FB Mathematik und Informatik

Fifth lecture, May 12, 2025
Sixth lecture, May 19, 2025



Today’s lecture follows the survey article

J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration:
The quasi-Monte Carlo way. Acta Numer. 22:133–288, 2013.
https://doi.org/10.1017/S0962492913000044

132

https://doi.org/10.1017/S0962492913000044


Notations

{1 : s} := {1, 2, . . . , s} for s ∈ N. We use fraktur letters to denote
subsets u ⊆ {1 : s}. We use |u| to denote the cardinality of set u.

For x ≥ 0, we define the fractional part {x} := x − ⌊x⌋ = mod(x , 1).
For x < 0, {x} := x + ⌊|x |⌋. For x ∈ Rs , we define

{x} := ({x1}, {x2}, . . . , {xs}).

For example, {(1.2, 0.5, 2.77)} = (0.2, 0.5, 0.77).

For u ⊆ {1 : s}, we define xu = (xj)j∈u and

∂|u|

∂xu
f (x) :=

∏
j∈u

∂

∂xj
f (x).

For example, with u = {1, 2, 4}, we have |u| = 3, xu = (x1, x2, x4),
and

∂|u|

∂xu
f (x) =

∂3

∂x1∂x2∂x4
f (x).
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Quasi-Monte Carlo methods

Let f ∈ C ([0, 1]s). We consider the problem of approximating the
high-dimensional integral

Is f =

∫
[0,1]s

f (y)dy .

Quasi-Monte Carlo (QMC) methods are a class of equal weight cubature
rules

Qn,s f =
1

n

n−1∑
i=0

f (t i ),

where (t i )n−1
i=0 is an ensemble of deterministic nodes in [0, 1]s (not a

random sample of U([0, 1]s)).

QMC methods exploit the smoothness and anisotropy of an integrand in
order to achieve better-than-Monte Carlo cubature convergence rates.
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Rank-1 lattice rules

Rank-1 lattice rules

Qn,s f =
1

n

n−1∑
i=0

f (t i )

have the points

t i = mod

(
iz
n
, 1

)
, i ∈ {0, . . . , n − 1},

where the entire point set is determined by
the generating vector z ∈ Ns , with all
components coprime to n.
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Lattice rule with z = (1, 55) and n = 89
nodes in [0, 1]2

The quality of the lattice rule is determined by the generating vector
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Historical remarks on the development of lattice rules

Number theorists (Korobov, Zaremba, Hua) in the 1950s and 60s.

Lattice rules for multiple integration (Sloan and Kachoyan 1987;
Sloan and Joe 1994).

Weighted spaces (Sloan and Woźniakowski 1998; Hickernell 1996).

Component-by-component (CBC) construction of lattice rules (Kuo,
Joe, Sloan 2002).

Fast CBC algorithm (Cools and Nuyens 2006; Kuo, Cools, and
Nuyens 2006).

Uncertainty quantification of PDEs using QMC methods (Kuo,
Schwab, Sloan 2012).

and of course many, many others! (Dick, Giles, Goda, Graham, Kritzer,
Niederreiter, Pillichshammer, Wasilkowski, . . .)
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Brief introduction to the classical theory of lattice rules
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Let f : [0, 1]s → R be an absolutely continuous and 1-periodic function, i.e.,

f (y1, y2, . . . , ys) = f (y1 + 1, y2, . . . , ys) = f (y1, y2 + 1, . . . , ys) = · · · ,
with an absolutely convergent Fourier series

f (x) =
∑
h∈Zs

f̂ (h)e2πih·x , f̂ (h) :=
∫
[0,1]s

f (x)e−2πih·x dx .

Then the lattice rule error is precisely the sum of the integrand’s Fourier
coefficients over the so-called dual lattice.

Theorem (Rank-1 lattice rule error)

Under the aforementioned conditions on f : [0, 1]s → R, there holds

Qn,s(f )− Is(f ) =
∑

h∈Λ⊥\{0}

f̂ (h),

where the dual lattice

Λ⊥ := {h ∈ Zs | h · z ≡ 0 (mod n)}

is determined entirely by the generating vector z ∈ Ns and n ∈ N.
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For future convenience, let us prove a couple of helpful auxiliary identities.

Lemma

Let h = (h1, . . . , hs) ∈ Zs and n ∈ N. Then∫
[0,1]s

e2πih·x dx =

{
1 if h = 0

0 otherwise

1

n

n−1∑
k=0

e2πikh·z/n =

{
1 if h · z ≡ 0 (mod n)

0 otherwise.

Proof. By Fubini’s theorem∫
[0,1]s

e2πih·x dx =
s∏

j=1

∫ 1

0
e2πihjxj dxj , (1)

where ∫ 1

0
e2πihjxj dxj =

{∫ 1
0 dxj if hj = 0[
e
2πihj xj

2πihj

]xj=1

xj=0
if hj ̸= 0

=

{
1 if hj = 0

0 if hj ̸= 0.

Thus the expression (1) is zero unless h1 = h2 = · · · = hs = 0.
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To prove the second claim

1

n

n−1∑
k=0

e2πikh·z/n =

{
1 if h · z ≡ 0 (mod n)

0 otherwise

consider two cases:

If h · z is a multiple of n, i.e., h · z ≡ 0 (mod n), then clearly

1

n

n−1∑
k=0

e2πikh·z/n =
1

n

n−1∑
k=0

e0 = 1.

If h · z is not a multiple of n, then by the geometric sum formula

1

n

n−1∑
k=0

e2πikh·z/n =
1

n

n−1∑
k=0

(
e2πih·z/n

)k

=
1

n

1− (e2πih·z/n)n

1− e2πih·z/n
= 0.

This yields the assertion.
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Proof (Rank-1 lattice rule error). Using the Fourier series representation

f (x) =
∑
h∈Zs

f̂ (h)e2πih·x , f̂ (h) :=
∫
[0,1]s

f (x)e−2πih·x dx ,

and noting that e2πi
{

kz
n

}
·h = e2πikz ·h/n, we can change the order of the

series (note that the Fourier series is absolutely convergent!) to obtain

Qn,s(f )− Is(f ) =
1

n

n−1∑
k=0

f

({
kz
n

})
−
∫
[0,1]s

f (x)dx

=
1

n

n−1∑
k=0

∑
h∈Zs

f̂ (h)e2πih·x/n − f̂ (0)

=
∑
h∈Zs

f̂ (h)
1

n

n−1∑
k=0

e2πih·x/n︸ ︷︷ ︸
=1 if h·z≡0 (mod n)

=0 otherwise

− f̂ (0)

=
∑
h∈Zs

h·z≡0 (mod n)

f̂ (h)− f̂ (0) =
∑

h∈Zs\{0}
h·z≡0 (mod n)

f̂ (h).
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Ultimately, we are interested in applying lattice rules for non-periodic,
smooth functions. We will need to put in a bit more effort to make this
method work in the non-periodic setting...
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Worst-case error and reproducing kernel Hilbert space (RKHS)
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Worst-case error

In the classical study of quadrature and cubature rules, we usually consider
the so-called worst-case error. Suppose that f ∈ H, where H is a Hilbert
space continuously embedded in C ([0, 1]s). Let Is : H → R be an integral
operator

Is f :=

∫
[0,1]s

f (x)dx

and let Qn,s : H → R be a QMC rule

Qn,s f :=
1

n

n−1∑
i=0

f (t i ),

where P := {t i ∈ [0, 1]s | 0 ≤ i ≤ n − 1} is a collection of cubature nodes.
The worst-case error of cubature rule Qn,s in H is defined by

en,s(P;H) := sup
f ∈H

∥f ∥H≤1

|Is f − Qn,s f |.

Note that this is precisely the operator norm of ∥Is − Qn,s∥H→R.
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Since the worst-case error is just the operator norm of Is − Qn,s , we can
express the cubature error as

|Is f − Qn,s f | ≤ en,s(P;H)∥f ∥H .

Worst-case errors are in general hard to compute – except for the special
case, when H is a reproducing kernel Hilbert space (RKHS).

Our strategy will be to choose the Hilbert space H (where our integrand f
lives) to be such that it is possible to write down the expression for
en,s(P;H) explicitly given a family of QMC rules. This allows us to
analyze the dependence of the cubature error w.r.t. n and s.

We will end up taking H as an unanchored, weighted Sobolev space since
this choice turns out to be “compatible” with the family of (randomly
shifted) lattice rules!
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Reproducing kernel Hilbert space (RKHS)

Let H be a Hilbert space of functions on D ⊆ Rs , with the property that
every point evaluation is a bounded linear functional. That is, for any
y ∈ D, let

Ty (f ) := f (y) for all f ∈ H.

Then, since Ty is a bounded linear functional, by Riesz representation
theorem there exists a unique representer ay := K (·, y) ∈ H such that

Ty (f ) = ⟨f , ay ⟩ = ⟨f ,K (·, y)⟩ for all f ∈ H.

The function K (x , y) is known as the reproducing kernel of H.

Definition (Reproducing kernel)

A reproducing kernel of a Hilbert space H of functions on D ⊆ Rs is a
function K : D × D → R which satisfies

K (·, y) ∈ H for all y ∈ D

and f (y) = ⟨f ,K (·, y)⟩ for all f ∈ H and y ∈ D.

The latter property is known as the reproducing property. 158



Remarks

A reproducing kernel Hilbert space (RKHS) is a Hilbert space
equipped with a reproducing kernel, or equivalently, it is a Hilbert
space in which every point evaluation is a bounded linear functional.

For any other bounded linear functional A : H → R, its representer
a ∈ H satisfying A(f ) = ⟨f , a⟩ for all f ∈ H is given by

a(y) = ⟨a,K (·, y)⟩ = ⟨K (·, y), a⟩ = A(K (·, y)) for all y ∈ D.

Any reproducing kernel K (x , y) is symmetric in its arguments:

K (x , y) = K (y , x) for all x , y ∈ D.

Proof. For fixed y ∈ D, apply the reproducing property to the
function f = K (·, y) to get

K (x , y) = f (x) = ⟨f ,K (·, x)⟩ = ⟨K (·, y), ⟨K (·, x)⟩
= ⟨K (·, x),K (·, y)⟩ = K (y , x).
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Example

Suppose that we have a Hilbert space containing continuous functions on
[0, 1] with square-integrable first order derivatives, equipped with the inner
product

⟨f , g⟩ =
(∫ 1

0
f (x) dx

)(∫ 1

0
g(x)dx

)
+

∫ 1

0
f ′(x)g ′(x) dx .

Then this space has the reproducing kernel

K (x , y) = 1 + η(x , y), η(x , y) = 1
2B2(|x − y |) + (x − 1

2)(y −
1
2),

where B2(x) := x2 − x + 1
6 denotes the Bernoulli polynomial of degree 2.

That is, we claim that

⟨f ,K (·, y)⟩ = f (y) for all y ∈ [0, 1].
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Example (continued)

By observing that∫ 1

0

K(x , y)dx = 1 and
∂

∂x
K(x , y) = x − 1

2
− 1

2
sign(x − y),

there holds

⟨f ,K(·, y)⟩ =
(∫ 1

0

f (x)dx

)(∫ 1

0

K(x , y) dx

)
︸ ︷︷ ︸

=1

+

∫ 1

0

f ′(x)

(
x − 1

2
− 1

2
sign(x − y)

)
dx

=

∫ 1

0

f (x)dx +

∫ 1

0

f ′(x)x dx − 1

2

∫ 1

0

f ′(x) dx +
1

2

∫ y

0

f ′(x) dx − 1

2

∫ 1

y

f ′(x)dx

=
��

���
∫ 1

0

f (x)dx +��f (1)−
��

���
∫ 1

0

f (x)dx −
�
��

1

2
f (1) +

�
��

1

2
f (0) +

1

2
f (y)−

�
��

1

2
f (0)−

�
��

1

2
f (1) +

1

2
f (y)

= f (y)

for all y ∈ [0, 1], as desired.

161



Theorem

Let H := Hs(K ) be an RKHS and let K : [0, 1]s × [0, 1]s → R be a
reproducing kernel that satisfies∫

[0,1]s

∫
[0,1]s

K (x , y) dx dy <∞.

Then

e2n,s(P;Hs(K )) =

∫
[0,1]s

∫
[0,1]s

K (x , y) dx dy − 2

n

n−1∑
i=0

∫
[0,1]s

K (t i , y) dy

+
1

n2

n−1∑
i=0

n−1∑
j=0

K (t i , t j).

(2)
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Proof. For f ∈ H, we apply the reproducing property f (tk) = ⟨f ,K (·, tk)⟩H
and average the results to obtain

Qn,s f =
1

n

n−1∑
k=0

f (tk) =
1

n

n−1∑
k=0

⟨f ,K (·, tk)⟩H =

〈
f ,

1

n

n−1∑
k=0

K (·, tk)
〉

H

. (3)

Similarly, we find that

Is f =

∫
[0,1]s

f (x) dx =

∫
[0,1]s
⟨f ,K (·, x)⟩H dx =

〈
f ,

∫
[0,1]s

K (·, x) dx
〉

H

,

(4)

which holds provided that
∫
[0,1]s K (·, x) dx ∈ H. However, this is

guaranteed by our assumption since∥∥∥∥∫
[0,1]s

K (·, x)dx
∥∥∥∥2
H

=

∫
[0,1]s

∫
[0,1]s
⟨K (·, x),K (·, y)⟩H dx dy

=

∫
[0,1]s

∫
[0,1]s

K (x , y) dx dy <∞,

which will hold for all the kernels we shall consider.
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Taking the difference of (3) and (4) yields

Is f − Qn,s f =

〈
f ,

∫
[0,1]s

K (·, x)dx − 1

n

n−1∑
i=0

K (·, t i )
〉

H

= ⟨f , ξ⟩H ,

where

ξ(y) :=
∫
[0,1]s

K (x , y) dx − 1

n

n−1∑
i=0

K (y , t i ), y ∈ [0, 1]s

is called the representer of the integration error since

en,s(P;H) = sup
∥f ∥≤1

|⟨f , ξ⟩H | = ∥ξ∥H .

Especially, the supremum is attained by f = ξ/∥ξ∥ ∈ H and we obtain

e2n,s(P;H) =

∥∥∥∥∫
[0,1]s

K (·, x) dx − 1

n

n−1∑
i=0

K (x , t i )
∥∥∥∥2

=

∫
[0,1]s

∫
[0,1]s

K (x , y) dx dy− 2

n

n−1∑
i=0

∫
[0,1]s

K (x , t i ) dx+
1

n2

n−1∑
i=0

n−1∑
j=0

K (t i , t j),

as desired.
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Randomly shifted rank-1 lattice points

In what follows, we will discuss randomly shifted QMC rules.

Consider the rank-1 lattice point set tk := {kz
n } for some generating vector

z ∈ Ns and fixed n ∈ N. Given a vector ∆ ∈ [0, 1]s , known as the shift,
the ∆-shift of the QMC points t0, . . . , tn−1 is defined as the point set

{tk +∆}, k = 0, . . . , n − 1.

Shifting preserves the lattice structure. In practice, we will generate a
number of independent random shifts ∆0, . . . ,∆R−1 from U([0, 1]s) and
take the average of ∆0, . . . ,∆R−1-shifted QMC rules as our
approximation of Is .

Advantages:

Leads to a shift-invariant kernel (advantageous for high-dimensional
computation).

Randomization yields an unbiased estimator of the integral.

Randomization provides a practical error estimate.
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Shifted rank-1 lattice rules have points{
kz
n

+∆

}
, k = 0, . . . , n − 1.

Use a number of random shifts for error estimation.
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Lattice rule shifted by ∆ = (0.1, 0.3).
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Randomization in practice

Generate R independent random shifts ∆0, . . . ,∆R−1 from U([0, 1]s).
For a given QMC rule with points (t i )n−1

i=0 ⊂ [0, 1]s , form the

approximations Q
(0)
n,s f , . . . ,Q

(R−1)
n,s f , where

Q∆r
n,s f =

1

n

n−1∑
i=0

f ({t i +∆r}), r = 0, . . . ,R − 1,

is the approximation of the integral using a ∆r -shift of the original
QMC rule.
We take the average

Qn,s,R f =
1

R

R−1∑
r=0

Q∆r
n,s f

as our final approximation of the integral.
An unbiased estimate for the mean-square error of Qn,s,R f is given by

E∆|Is f − Q∆
n,s f |2 ≈

1

R(R − 1)

R−1∑
r=0

(Q∆r
n,s f − Qn,s,R f )

2.
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Q∆0
n,s f = 1

n

∑n−1
i=0 f ({t i +∆0}), Q∆1

n,s f = 1
n

∑n−1
i=0 f ({t i +∆1}), Q∆2

n,s f = 1
n

∑n−1
i=0 f ({t i +∆2})

QMC approximation with 3 random shifts: Qn,s,3f =
Q

∆0
n,s f+Q

∆1
n,s f+Q

∆2
n,s f

3
.
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Q∆0
n,s f = 1

n

∑n−1
i=0 f ({t i +∆0}), Q∆1

n,s f = 1
n

∑n−1
i=0 f ({t i +∆1}), Q∆2

n,s f = 1
n

∑n−1
i=0 f ({t i +∆2})

QMC approximation with 3 random shifts: Qn,s,3f =
Q

∆0
n,s f+Q

∆1
n,s f+Q

∆2
n,s f

3
.
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Q∆0
n,s f = 1

n

∑n−1
i=0 f ({t i +∆0}), Q∆1

n,s f = 1
n

∑n−1
i=0 f ({t i +∆1}), Q∆2

n,s f = 1
n

∑n−1
i=0 f ({t i +∆2})

QMC approximation with 3 random shifts: Qn,s,3f =
Q

∆0
n,s f+Q

∆1
n,s f+Q

∆2
n,s f

3
.
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Q∆0
n,s f = 1

n

∑n−1
i=0 f ({t i +∆0}), Q∆1

n,s f = 1
n

∑n−1
i=0 f ({t i +∆1}), Q∆2

n,s f = 1
n

∑n−1
i=0 f ({t i +∆2})

QMC approximation with 3 random shifts: Qn,s,3f =
Q

∆0
n,s f+Q

∆1
n,s f+Q

∆2
n,s f

3
.
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Q∆0
n,s f = 1

n

∑n−1
i=0 f ({t i +∆0}), Q∆1

n,s f = 1
n

∑n−1
i=0 f ({t i +∆1}), Q∆2

n,s f = 1
n

∑n−1
i=0 f ({t i +∆2})

QMC approximation with 3 random shifts: Qn,s,3f =
Q

∆0
n,s f+Q

∆1
n,s f+Q

∆2
n,s f

3
.
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Shift-averaged worst-case error

For any QMC point set P = {t0, . . . , tn−1} and any shift ∆ ∈ [0, 1]s , let

P +∆ := {{t i +∆} | i = 0, 1, . . . , n − 1}
denote the shifted QMC point set, and let Q∆

n,s f denote a corresponding
shifted QMC rule (over the point set P +∆). For any integrand f ∈ H, it
follows from the definition of the worst-case error that

|Is f − Qn,s(∆; f )| ≤ en,s(P +∆;H)∥f ∥H ,
where en,s(P +∆;H) := sup∥f ∥H≤1 |Is(f )− Q∆

n,s f |. We deduce a bound
for the root-mean-square error√

E∆|Is f − Q∆
n,s f |2 ≤ eshn,s(P;H)∥f ∥H ,

where the expected value E∆ is taken over the random shift ∆ which is
uniformly distributed over [0, 1]s and the quantity

eshn,s(P;H) :=

√∫
[0,1]s

e2n,s(P +∆;H) d∆

is called the shift-averaged worst-case error. 173



Theorem (Formula for the shift-averaged worst-case error)

[eshn,s(P;Hs(K ))]2 = −
∫
[0,1]s

∫
[0,1]s

K (x , y)dx dy +
1

n2

n−1∑
i=0

n−1∑
j=0

K sh(t i , t j),

where

K sh(x , y) :=
∫
[0,1]s

K ({x +∆}, {y +∆})d∆, x , y ∈ [0, 1]s .

Proof. The definition of shift-averaged WCE and (2) imply

[eshn,s(P;Hs(K))]2 =

∫
[0,1]s

e2n,s(P +∆;H)d∆

=

∫
[0,1]s

∫
[0,1]s

K(x , y)dx dy − 2

n

n−1∑
i=0

∫
[0,1]s

∫
[0,1]s

K({t i +∆}, y) d∆dy

+
1

n2

n−1∑
i=0

n−1∑
j=0

∫
[0,1]s

K({t i +∆}, {t j +∆}) d∆.

The result follows by a change of variables x = {t i +∆} in the second term.
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Remarks

K sh(x , y) :=
∫
[0,1]s

K ({x +∆}, {y +∆})d∆, x , y ∈ [0, 1]s .

The function K sh is actually a reproducing kernel, with the
shift-invariant property

K sh(x , y) = K sh({x +∆}, {y +∆}) for all x , y ,∆ ∈ [0, 1].

Equivalently,

K sh(x , y) = K sh({x − y}, 0) for all x , y ∈ [0, 1].

The function K sh is called the shift-invariant kernel associated with K .
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Weighted Sobolev spaces
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Unanchored, weighted Sobolev space

For our purposes, the relevant function space setting will be the
unanchored, weighted Sobolev space. For any given collection (γu)u⊆{1:s}
of positive numbers (called weights), we associate a space Hs,γ containing
continuous functions on [0, 1]s whose mixed first partial derivatives are
square-integrable. It is defined by the reproducing kernel

Ks,γ(x , y) =
∑

u⊆{1:s}

γu
∏
j∈u

η(xj , yj), η(x , y) := 1
2B2(|x−y |)+(x−1

2)(y−
1
2),

where B2(x) := x2 − x + 1
6 is the Bernoulli polynomial of degree 2.

Norm ∥f ∥s,γ =
√
⟨f , f ⟩s,γ induced by the inner product

⟨f , g⟩s,γ =
∑

u⊆{1:s}

1

γu

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂|u|

∂xu
f (x) dx−u

)

×
(∫

[0,1]s−|u|

∂|u|

∂xu
g(x) dx−u

)
dxu,

where dxu :=
∏

j∈u dxj and dx−u :=
∏

j∈{1:s}\u dxj .
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Remarks

We sum over all 2s possible subsets of the indices {1 : s}. By
convention, an empty product is 1.

Each term of the sum corresponds to a subset of variables
xu = {xj | j ∈ u}. We refer to these as the “active” variables, and
denote the remaining “inactive” variables by x−u.

The cardinality |u| of the set u is referred to as the “order” of the
subset of variables xu. There is a weight parameter γu associated
with every subset of variables xu. The weights together model the
relative importance between different subsets of variables. A small

weight γu means that the L2 norm of ∂|u|f
∂xu

must also be small.

Note that ∥ · ∥s,γ and ∥ · ∥s,cγ are equivalent norms for any c > 0.†

Therefore we do not lose any generality by assuming that the weights
have been normalized s.t. γ∅ = 1. WLOG, we will always use the
convention that γ∅ := 1.

†Here, cγ = (cγu)u⊆{1:s}.
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Special forms of weights

Product weights: we have a sequence of numbers satisfying
γ1 ≥ γ2 ≥ · · · and we take

γu =
∏
j∈u

γj .

In this case, the reproducing kernel is given by the product

Ks,γ(x , y) =
∏
j∈u

(
1 + γjη(xj , yj)

)
.

Finite order weights: there exists q ∈ N s.t. γu = 0 for all |u| > q.
Order dependent weights: we have a sequence of numbers Γ1, Γ2, . . .,
and take

γu = Γ|u|.

Product-and-order dependent (POD) weights: we have two sequences
γ1, γ2, . . . and Γ1, Γ2, . . ., and take

γu = Γ|u|
∏
j∈u

γj .
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Why weighted spaces are interesting

Theorem (Sloan and Woźniakowski 1998)

Consider Hs,γ equipped with product weights γu =
∏

j∈u γj . Then there
exist point sets Pn ⊂ [0, 1]s for n = 1, 2, . . . such that the worst-case error
en,s(Pn;Hs,γ) is bounded independently of s if and only if

∞∑
j=1

γj <∞. (5)

To be more precise, the result has two parts:

If condition (5) does not hold, then no matter how the points are
chosen, the worst-case error is unbounded as s →∞.

However, if (5) holds, then “good points” exist (although the result
does not say how to find them).
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Recall that Hs,γ is defined via the reproducing kernel

Ks,γ(x , y) =
∑

u⊆{1:s}

γu
∏
j∈u

η(xj , yj), η(x , y) := 1
2B2(|x−y |)+(x−1

2)(y−
1
2),

where B2(x) := x2 − x + 1
6 is the Bernoulli polynomial of degree 2.

Lemma ∫
[0,1]s

Ks,γ(x , y)dy = 1,∫
[0,1]s

∫
[0,1]s

Ks,γ(x , y)dx dy = 1,∫
[0,1]s

Ks,γ(x , x) dx =
∑

u⊆{1:s}

γu(
1
6)

|u|.

Proof. Left as an exercise.
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Recall that Hs,γ is defined via the reproducing kernel

Ks,γ(x , y) =
∑

u⊆{1:s}

γu
∏
j∈u

η(xj , yj), η(x , y) := 1
2B2(|x−y |)+(x−1

2)(y−
1
2),

where B2(x) := x2 − x + 1
6 is the Bernoulli polynomial of degree 2.

For our analysis, we will need the shift-invariant kernel associated with Ks,γ .

Lemma

K sh
s,γ(x , y) :=

∫
[0,1]s

Ks,γ({x +∆}, {y +∆})d∆

=
∑

u⊆{1:s}

γu
∏
j∈u

B2(|xj − yj |).

Proof. This is an immediate consequence of∫ 1

0
η({x +∆}, {y +∆}) d∆ = B2(|x − y |).
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Let

P =

{{
kz
n

}
| k = 0, . . . , n − 1

}
be a rank-1 lattice point set corresponding to generating vector z ∈ Ns

and n ∈ N.

When dealing with the shift-invariant kernel corresponding to the
unanchored, weighted Sobolev space Hs,γ , we use the shorthand notation

eshn,s(z) := eshn,s(P;Hs,γ).
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Lemma

The shift-averaged worst-case error for a rank-1 lattice rule in the
weighted unanchored Sobolev space satisfies

[eshn,s(z)]
2 =

1

n

∑
∅̸=u⊆{1:s}

γu

n−1∑
k=0

∏
j∈u

B2

({
kzj
n

})
.

Proof. Let t j =
{ jz

n

}
. We have the kernel

Ks,γ(x , y) =
∑

u⊆{1:s}

γu
∏
j∈u

η(xj , yj), η(x , y) := 1
2B2(|x−y |)+(x−1

2)(y−
1
2),

which satisfies
∫
[0,1]s

∫
[0,1]s Ks,γ(x , y) dx dy = 1. We showed that the

shift-invariant kernel related to K is given by

K sh
s,γ(x , y) =

∑
u⊆{1:s}

γu
∏
k∈u

B2(|xk − yk |).

Moreover, we showed that the shift-averaged WCE is given by

[eshn,s(z)]
2 = −

∫
[0,1]s

∫
[0,1]s

Ks,γ(x , y) dx dy +
1

n2

n−1∑
i=0

n−1∑
j=0

K sh
s,γ(t i , t j).
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Making the obvious substitutions, we arrive at

[eshn,s(z)]
2 =− 1 +

1

n2

n−1∑
i=0

n−1∑
j=0

∑
u⊆{1:s}

γu
∏
k∈u

B2

({
(i − j)zk

n

})
(γ∅ := 1)

=
1

n2

n−1∑
i=0

n−1∑
j=0

∑
∅̸=u⊆{1:s}

γu
∏
k∈u

B2

({
mod(i − j , n)zk

n

})
.

As i and j range from 0 to n − 1, the values of mod(i − j , n) are just
0, . . . , n − 1 in some order (see next slide for illustration), with each value
occurring n times. Thus the double sum can be reduced into a single sum:

[eshn,s(z)]
2 =

1

n

n−1∑
ℓ=0

∑
∅̸=u⊆{1:s}

γu
∏
k∈u

B2

({
ℓzk
n

})
,

as desired.
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An illustration of the counting argument used on the
previous slide

i/j 0 1 2 3 4 · · · n − 1

0 0 1 2 3 4 · · · n − 1
1 n − 1 0 1 2 3 · · · n − 2
2 n − 2 n − 1 0 1 2 · · · n − 3
3 n − 3 n − 2 n − 1 0 1 · · · n − 4
4 n − 4 n − 3 n − 2 n − 1 0 · · · n − 5
...

...
...

...
...

...
. . .

...
n − 1 1 2 3 4 5 · · · 0

Table of the values mod(i − j , n), when i , j ∈ {0, 1, . . . , n − 1}.

By a simple counting argument we can write

n−1∑
i=0

n−1∑
j=0

f (mod(i − j , n)) = n
n−1∑
ℓ=0

f (ℓ)

for any function f : {0, 1, . . . , n − 1} → R.
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Two easy technical results

Lemma (Fourier expansion of the Bernoulli polynomial B2)

B2(x) =
1

2π2

∑
h∈Z\{0}

e2πihx

h2
.

Proof. Short argument: let F (x) = 1
2π2

∑
h∈Z\{0}

e2πihx

h2
. Now† F ′′(x) = 2,

so F (x) = x2 + c1x + c0. Moreover, F (0) = F (1) = 1
6 , so c0 =

1
6 and

c1 = −1. Hence F (x) = x2 − x + 1
6 = B2(x).

Lemma (“Jensen-like” inequality)

∞∑
k=1

ak ≤
( ∞∑

k=1

aλk

)1/λ

, ak ≥ 0, λ ∈ (0, 1].

Proof. Suppose that
∑∞

k=1 a
λ
k = 1. Then ak ≤ 1 ⇒ ak ≤ aλk

⇒
∑∞

k=1 ak ≤
∑∞

k=1 a
λ
k = 1, and hence

∑∞
k=1 ak ≤

(∑∞
k=1 a

λ
k

)1/λ
. The

general case
∑∞

k=1 a
λ
k = C ∈ R+ follows by applying the same argument

for the scaled sequence ak ← 1
C1/λ ak .

†F is absolutely convergent, so exchanging differentiation and summation is OK. 187



Component-by-component construction

The components of the generating vector z can be restricted to the set

Un := {z ∈ Z | 1 ≤ z ≤ n − 1 and gcd(z , n) = 1},

whose cardinality is given by the Euler totient function φ(n) := |Un|.
When n is prime, φ(n) takes its largest value n − 1.

We know that for f ∈ Hs,γ , there holds√
E∆|Is f − Q∆

n,s f |2 ≤ eshn,s(z)∥f ∥s,γ .

Finding z∗ = argminz∈Un
eshn,s(z) is not computationally feasible: the

search space contains altogether up to (n − 1)s possible choices for z .
However, the component-by-component (CBC) construction provides a
feasible way to obtain good lattice generating vectors.
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CBC construction

CBC construction. Given n, s, and weights (γu)u⊆{1:s}.
1. Set z1 = 1.
2. For k = 2, 3, . . . , s, choose zk ∈ Un to minimize [eshn,k(z1, . . . , zk)]

2.
Remarks:

Note that we have the (in principle computable) expression

[eshn,k(z)]
2 =

1

n

∑
∅̸=u⊆{1:k}

γu

n−1∑
ℓ=0

∏
j∈u

B2

({
ℓzj
n

})
. (6)

We will show that when the weights (γu)u⊆{1:s} are so-called product-and-order
dependent (POD) weights, i.e., they can be written in the form

γu := Γ|u|
∏
j∈u

γj , u ⊆ {1 : s},

where γ∅ := 1, (Γk)
∞
k=1 and (γj)

∞
j=1 are sequences of positive numbers, then the

value of (6) can be obtained in O(s n log n + s2n) time using the so-called fast
CBC algorithm. This is quadratic, not exponential, w.r.t. the dimension s.

The CBC algorithm is a greedy algorithm: in general, it will not produce a
generating vector which minimizes eshn,s(z). Regardless, we can produce an error
estimate for the QMC rule based on a generating vector constructed by the CBC
algorithm!
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